Discovery, Mechanism and Function of Type-V CRISPR-Cas Inhibitors

V型CRISPR-Cas抑制剂的发现、机制和功能

基本信息

项目摘要

PROJECT SUMMARY CRISPR-Cas12a has recently emerged as a powerful gene editing tool with great potential to ameliorate wide- ranging diseases through gene therapy. Cas12a, like Cas9, is a nuclease that can be programmed to cut genomes at specific sequences with high efficiency, but it is better for targeting AT-rich sequences and multiple genes simultaneously. The safe implementation of Cas12a, however, requires the development of inhibitors that can enable regulation and prevent editing at off-target sites. It also requires improved understanding of Cas12a biology and cleavage activity in cells, for which a paucity of data exists. For example, Cas12a has been shown to indiscriminately cleave single-stranded DNA (i.e. perform trans-cleavage) after binding to its target DNA in vitro, but it is not known if this occurs in cells. The long-term objectives of this proposal are to identify and develop Cas12a inhibitors and determine if Cas12 trans-cleavage occurs in vivo. Using bioinformatics and in vivo assays, we have recently discovered the first three proteins (acrVA1-3) that inhibit Cas12a cleavage in bacteria and in human cells. These proteins are encoded in a phage (virus) infecting bacteria, where they inhibit phage cleavage by Cas12a. These inhibitors stand to provide useful tools for Cas12a regulation, but their successful implementation requires insight into their mechanisms of inhibition. Preliminary evidence suggests that each AcrVA protein functions by a distinct mechanism, which will be elucidated using a variety of in vitro and in vivo assays that determine their effect on Cas12a expression and target DNA binding. Next, we will identify AcrVA proteins that optimally inhibit different Cas12a variants commonly used in gene editing. This will be achieved by mutagenizing acrVA1 and selecting for optimized inhibitors using bacterial selection screens as well as by exploring natural acrVA diversity using bioinformatics and in vivo inhibition assays. Finally, the existence of indiscriminate Cas12a trans-cleavage in vivo and its susceptibility to inhibition by acrVA1-3 will be determined using phage infection experiments in bacteria. Overall, this work will illuminate fundamental Cas12a biology and develop these novel inhibitors into powerful tools that can regulate Cas12a activity. In doing so, it will significantly improve the safety and utility of Cas12a in correcting genetic disorders. This work will be performed at UCSF, which hosts world-class facilities and a highly intellectual and collaborative research community. It will also provide me with the expertise in bacterial-phage biology, biochemistry, and gene editing that I need to fulfill my postdoctoral training goals and pioneer an independent research program in bacterial-phage counter-immunity.
项目概要 CRISPR-Cas12a 最近成为一种强大的基因编辑工具,具有改善广泛疾病的巨大潜力。 通过基因治疗治疗多种疾病。 Cas12a 与 Cas9 一样,是一种可以编程切割的核酸酶 高效地定位特定序列的基因组,但更适合靶向富含 AT 的序列和多个 基因同时。然而,Cas12a 的安全实施需要开发抑制剂 这可以实现监管并防止在脱靶站点进行编辑。还需要加深对 Cas12a 生物学和细胞裂解活性,目前数据很少。例如,Cas12a 有 已被证明在与其结合后可以不加区别地切割单链 DNA(即进行反式切割) 体外靶向 DNA,但尚不清楚这是否发生在细胞中。 该提案的长期目标是识别和开发 Cas12a 抑制剂,并确定 Cas12 是否 反式裂解发生在体内。利用生物信息学和体内测定,我们最近发现了第一个 抑制细菌和人体细胞中 Cas12a 裂解的三种蛋白质 (acrVA1-3)。这些蛋白质是 在感染细菌的噬菌体(病毒)中编码,它们通过 Cas12a 抑制噬菌体裂解。这些抑制剂 将为 Cas12a 调控提供有用的工具,但其成功实施需要深入了解 他们的抑制机制。初步证据表明,每种 AcrVA 蛋白通过独特的方式发挥作用 机制,将通过各种体外和体内测定来阐明,以确定它们对 Cas12a 表达和靶 DNA 结合。接下来,我们将鉴定能够最佳抑制不同的 AcrVA 蛋白 Cas12a 变体常用于基因编辑。这将通过诱变 acrVA1 并选择来实现 使用细菌选择筛选以及探索天然 acrVA 多样性来优化抑制剂 生物信息学和体内抑制测定。最后,Cas12a 不加选择的反式切割的存在 体内及其对 acrVA1-3 抑制的敏感性将使用噬菌体感染实验来确定 细菌。总的来说,这项工作将阐明 Cas12a 的基本生物学原理,并将这些新型抑制剂开发成 可以调节 Cas12a 活性的强大工具。这样做,将显着提高安全性和实用性 Cas12a 纠正遗传性疾病。这项工作将在拥有世界一流设施的加州大学旧金山分校进行 以及一个高度智慧和协作的研究社区。它还将为我提供以下方面的专业知识 我需要实现我的博士后培训目标和细菌噬菌体生物学、生物化学和基因编辑 开创了细菌噬菌体反免疫的独立研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole D. Marino其他文献

Translation-dependent downregulation of Cas12a mRNA by an anti-CRISPR protein
抗 CRISPR 蛋白对 Cas12a mRNA 的翻译依赖性下调
  • DOI:
    10.1101/2022.11.29.518452
  • 发表时间:
    2023-06-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicole D. Marino;Alexander Talaie;Heloise Carion;Matthew C. Johnson;Yang Zhang;Sukrit Silas;Yuping Li;Joseph Bondy
  • 通讯作者:
    Joseph Bondy
Discovery of multiple anti-CRISPRs uncovers anti-defense gene clustering in mobile genetic elements
  • DOI:
    10.1101/2020.05.22.110304
  • 发表时间:
    2020-05-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rafael Pinilla;Saadlee Shehreen;Nicole D. Marino;Robert D. Fagerlund;Chris M. Brown;S. Sørensen;Peter C. Fineran;Joseph Bondy
  • 通讯作者:
    Joseph Bondy
MYR1-Dependent Effectors Are the Major Drivers of a Host Cell’s Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects
MYR1 依赖性效应器是宿主细胞对弓形虫早期反应的主要驱动因素,包括抵消 MYR1 独立效应
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    A. Naor;Michael W. Panas;Nicole D. Marino;M. Coffey;Christopher J. Tonkin;J. Boothroyd
  • 通讯作者:
    J. Boothroyd
Co-immunoprecipitation with MYR1 identifies three additional proteins within the Toxoplasma parasitophorous vacuole required for translocation of dense granule effectors into host cells
与 MYR1 的免疫共沉淀鉴定了弓形虫寄生液泡内的另外三种蛋白质,这些蛋白质是将致密颗粒效应器易位到宿主细胞中所必需的
  • DOI:
    10.1101/867788
  • 发表时间:
    2019-12-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alicja M. Cygan;Terence C. Theisen;Alma G. Mendoza;Nicole D. Marino;Michael W. Panas;J. Boothroyd
  • 通讯作者:
    J. Boothroyd
Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins within the Toxoplasma gondii Parasitophorous Vacuole Required for Translocation of Dense Granule Effectors into Host Cells
与 MYR1 的免疫共沉淀鉴定了弓形虫寄生液泡中致密颗粒效应器易位至宿主细胞所需的另外三种蛋白质
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Alicja M. Cygan;Terence C. Theisen;Alma G. Mendoza;Nicole D. Marino;Michael W. Panas;J. Boothroyd
  • 通讯作者:
    J. Boothroyd

Nicole D. Marino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole D. Marino', 18)}}的其他基金

Discovery of novel phage-bacterial interactions
发现新的噬菌体-细菌相互作用
  • 批准号:
    10478945
  • 财政年份:
    2021
  • 资助金额:
    $ 6.53万
  • 项目类别:
Discovery of novel phage-bacterial interactions
发现新的噬菌体-细菌相互作用
  • 批准号:
    10282672
  • 财政年份:
    2021
  • 资助金额:
    $ 6.53万
  • 项目类别:
Discovery, Mechanism and Function of Type-V CRISPR-Cas Inhibitors
V型CRISPR-Cas抑制剂的发现、机制和功能
  • 批准号:
    10379774
  • 财政年份:
    2019
  • 资助金额:
    $ 6.53万
  • 项目类别:
Discovery, Mechanism and Function of Type-V CRISPR-Cas Inhibitors
V型CRISPR-Cas抑制剂的发现、机制和功能
  • 批准号:
    9760566
  • 财政年份:
    2019
  • 资助金额:
    $ 6.53万
  • 项目类别:
The role of Toxoplasma gondii amino acid hydroxylase 2 in chronic infection
弓形虫氨基酸羟化酶2在慢性感染中的作用
  • 批准号:
    8981711
  • 财政年份:
    2015
  • 资助金额:
    $ 6.53万
  • 项目类别:
The role of Toxoplasma gondii amino acid hydroxylase 2 in chronic infection
弓形虫氨基酸羟化酶2在慢性感染中的作用
  • 批准号:
    9120661
  • 财政年份:
    2015
  • 资助金额:
    $ 6.53万
  • 项目类别:

相似国自然基金

附生细菌诱导对铜绿微囊藻抑菌物质的影响及其抑菌机制研究
  • 批准号:
    32360028
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
捕食线虫真菌内生细菌多样性及对捕食器官形成的影响
  • 批准号:
    32370017
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
水平基因转移对蓝细菌基因组演化及生态适应性的影响
  • 批准号:
    32370009
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
微塑料与β-内酰胺类抗生素联合暴露对耐药细菌胞外DNA生物转化的影响机制及其风险预测
  • 批准号:
    52370202
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
海洋噬菌体通过铁载体转运途径感染蓝细菌影响铁迁移的机制
  • 批准号:
    42306113
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
  • 批准号:
    10590033
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
Mechanisms and regulation of replication, the cell cycle, gene expression, and horizontal gene transfer in prokaryotes, focusing on Bacillus subtilis.
原核生物复制、细胞周期、基因表达和水平基因转移的机制和调控,重点关注枯草芽孢杆菌。
  • 批准号:
    10552390
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
  • 批准号:
    10647072
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
Molecular mechanisms behind microbiota regulation of host amino acid and glucose homeostasis
微生物群调节宿主氨基酸和葡萄糖稳态背后的分子机制
  • 批准号:
    10639042
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
Structural and Functional Analysis of Nucleocytoplasmic Protein O-Glycosyltransferases in Plants
植物核胞质蛋白 O-糖基转移酶的结构和功能分析
  • 批准号:
    10648930
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了