Mechanisms for bacterial dissemination in corneal infection
角膜感染中细菌传播的机制
基本信息
- 批准号:9918910
- 负责人:
- 金额:$ 4.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActive SitesAffectAllelesBacteremiaBacteriaBioinformaticsCandidate Disease GeneCell DeathCell membraneCellsCellular biologyCorneaCorneal DiseasesCytoplasmDataDevelopmentDiseaseDoctor of PhilosophyElectron MicroscopyElectronsEngineeringEpithelialEpithelial CellsEpitheliumEventEyeFellowshipFibrosisGenesHumanImageImmunocompromised HostImmunofluorescence MicroscopyIn VitroIndividualInfectionInjuryInvadedKnock-outLeadLibrariesLifeMediatingMethodsMicrobial BiofilmsMicrotubulesModelingMotorMovementMusMutationNosocomial InfectionsOutcomePathogenesisPatientsPenetrationPhospholipasePilumPlasma CellsPneumoniaPolymerase Chain ReactionPostdoctoral FellowProcessPseudomonas aeruginosaPseudomonas aeruginosa infectionPublicationsPublishingRegulationRoleRouteSecond Messenger SystemsSolidSuggestionSurfaceTestingTheoretical modelTimeTrainingTranscriptUrinary tract infectionVacuoleVariantVirulenceWestern Blottingappendagebacterial geneticscell motilitycorneal epitheliumdepolymerizationdifferential expressionexperimental studyfollow-uphost-microbe interactionshuman pathogenin vivoin vivo Modelmouse modelmutantnovel strategiespreventprotein expressionsevere injurytooltraffickingtranscriptome sequencing
项目摘要
Project Summary
Pseudomonas aeruginosa is among the most common causes of blinding corneal disease, while
also being a major cause of life threating nosocomial infections such as pneumonia, bacteremia,
urinary tract infections (UTIs), and cytstic fibrosis (CF), targeting immunocompromised and
critically injured patients. Publications from the Fleiszig lab have shown that twitching motility, a
type of surface associated movement, contributes to the ability of P. aeruginosa to penetrate
human corneal epithelial cell multilayers in vitro and is critical to pathogenesis of P. aeruginosa
corneal infection in a mouse model in vivo. Key to P. aeruginosa pathogenesis in the cornea is
the capacity of the bacteria to invade corneal epithelial cells. While P. aeruginosa mutants that
lack twitching motility can invade epithelial cells, and replicate inside them just as efficiently as
wildtype bacteria, they have reduced capacity for exiting cells they have entered. During my
postdoctoral fellowship in the Fleiszig lab, I used imaging and various other methods to study the
mechanisms by which P. aeruginosa exits epithelial cells. Importantly, my preliminary data show
that exit does not necessarily follow cell death, suggesting active/deliberate mechanisms
contribute. My data further show that when twitching mutants invade and replicate in corneal
epithelial cells, they differ from wildtype P. aeruginosa in being unable to distribute themselves in
the cytoplasm and instead accumulate in aggregates. I have also screened a mutant library for
exit capacity, and have found that mutants in either of two phospholipases, PlcB or PA2155, are
exit defective. In contrast to twitching mutants, the phospholipase mutants spread normally
throughout the host cell cytoplasm. Thus, my data mechanistically separate the exit process into
two stages one dependent on twitching and the other dependent on phospholipases. My
theoretical model for exit is that P. aeruginosa uses twitching motility to avoid forming a biofilm
aggregate inside the cell and to access the host cell plasma membrane, where they use
phospholipase activity (e.g. of PlcB and PA2155) to alter the plasma membrane to provide an exit
route. Thus, in aim 1 I will the identify the genes transcripts that impact twitching mutant
aggregation and exit compared to wildtype, and in aim 2 I will determine if phospholipases
facilitate exit through their enzymatic activity. While contributing to our understanding of P.
aeruginosa pathogenesis, this project could ultimately contribute to development of strategies for
preventing and treating infections that act by preventing bacterial penetration through our
protective surface epithelia.
项目概要
铜绿假单胞菌是导致致盲性角膜疾病的最常见原因之一,而
也是威胁生命的医院感染(例如肺炎、菌血症、
尿路感染 (UTI) 和囊性纤维化 (CF),针对免疫功能低下和
重伤患者。 Fleiszig 实验室的出版物表明,抽搐运动是一种
与表面相关的运动类型,有助于铜绿假单胞菌渗透的能力
体外人角膜上皮细胞多层,对铜绿假单胞菌的发病机制至关重要
体内小鼠模型的角膜感染。角膜中铜绿假单胞菌发病机制的关键是
细菌侵入角膜上皮细胞的能力。而铜绿假单胞菌突变体
缺乏抽搐运动可以侵入上皮细胞,并在其内部复制,就像
野生型细菌,它们退出所进入的细胞的能力降低。在我的
在 Fleiszig 实验室的博士后研究期间,我使用成像和各种其他方法来研究
铜绿假单胞菌退出上皮细胞的机制。重要的是,我的初步数据显示
这种退出并不一定伴随着细胞死亡,这表明主动/有意的机制
贡献。我的数据进一步表明,当抽搐突变体侵入角膜并在角膜中复制时
上皮细胞,它们与野生型铜绿假单胞菌的不同之处在于无法将自身分布在
细胞质并以聚集体形式积累。我还筛选了一个突变体库
出口能力,并发现两种磷脂酶 PlcB 或 PA2155 中的突变体
退出有缺陷。与抽搐突变体相反,磷脂酶突变体正常传播
遍及宿主细胞的细胞质。因此,我的数据机械地将退出过程分为
两个阶段,一个阶段依赖于抽搐,另一个阶段依赖于磷脂酶。我的
退出的理论模型是铜绿假单胞菌利用抽搐运动来避免形成生物膜
聚集在细胞内并进入宿主细胞质膜,在那里它们使用
磷脂酶活性(例如 PlcB 和 PA2155)改变质膜以提供出口
路线。因此,在目标 1 中,我将鉴定影响抽搐突变体的基因转录本
与野生型相比,聚集和退出,在目标 2 中,我将确定磷脂酶是否
通过其酶活性促进退出。同时有助于我们对 P 的理解。
铜绿假单胞菌发病机制,该项目最终可能有助于制定铜绿假单胞菌发病机制
通过阻止细菌渗透到我们的身体来预防和治疗感染
保护性表面上皮。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincent Nieto其他文献
Vincent Nieto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincent Nieto', 18)}}的其他基金
Mechanisms for bacterial dissemination in corneal infection
角膜感染中细菌传播的机制
- 批准号:
9541945 - 财政年份:2018
- 资助金额:
$ 4.79万 - 项目类别:
相似海外基金
Targeting durotaxis in lung injury and fibrosis
靶向肺损伤和纤维化中的杜罗轴
- 批准号:
10364927 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Targeting durotaxis in lung injury and fibrosis
靶向肺损伤和纤维化中的杜罗轴
- 批准号:
10532249 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Post translational modifications tune cardiac myosin
翻译后修饰调节心肌肌球蛋白
- 批准号:
10291447 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Mechanisms for bacterial dissemination in corneal infection
角膜感染中细菌传播的机制
- 批准号:
9541945 - 财政年份:2018
- 资助金额:
$ 4.79万 - 项目类别:
Nano and Microscale Molecular Machines for Innate Immune Sensing of Candida
用于念珠菌先天免疫传感的纳米和微型分子机器
- 批准号:
8984585 - 财政年份:2015
- 资助金额:
$ 4.79万 - 项目类别: