A Software Platform for the Identification of Cell Surface Antigens Using RNA-seq Data
使用 RNA-seq 数据识别细胞表面抗原的软件平台
基本信息
- 批准号:9909639
- 负责人:
- 金额:$ 30.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-12 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAdult Acute Myeloblastic LeukemiaAlternative SplicingAntibodiesAspirate substanceAutoimmunityAutomobile DrivingBindingBone MarrowCell LineCell surfaceCessation of lifeChildhoodChildhood Acute Myeloid LeukemiaChronicCollaborationsComputer SimulationComputer softwareConsumptionDataDatabasesDevelopmentDiagnosisDiseaseDrug TargetingEpitopesEventFDA approvedGrantHigh-Throughput Nucleotide SequencingImmune responseImmunologicsImmunooncologyImmunotherapyIn VitroInfectionInflammationInflammatoryKnowledgeLeadLeukemic CellLymphocyteMachine LearningMalignant NeoplasmsMemorial Sloan-Kettering Cancer CenterMethodsModalityMonoclonal AntibodiesMorbidity - disease rateMutationNonsense-Mediated DecayPathogenicityPatientsPeptidesPerformancePharmacologic SubstancePhasePopulationProbabilityProtein IsoformsProteomicsRNA DatabasesRNA SplicingRegulationRelapseResistanceResourcesRoleSamplingSmall Business Innovation Research GrantSourceSpliceosomesSurface AntigensTechniquesTechnologyTertiary Protein StructureTherapeuticTimeTrainingTranscriptTranslationsTumor-DerivedWorld Health Organizationbaseclinically relevantcostdrug developmentdrug discoveryhigh throughput technologyhuman diseasehuman monoclonal antibodiesimmunogenicinnovative technologiesknowledge basemachine learning algorithmmelanomamortalitynew therapeutic targetnovelnovel therapeuticspatient biomarkerspatient stratificationresponsesuccesstherapeutic developmenttherapy resistanttranscriptome sequencingtumortumor heterogeneity
项目摘要
Human monoclonal antibodies are among the fastest growing therapeutic modalities, with
over sixty compounds approved by FDA to treat infections, autoimmunity, chronic inflammation
and cancer. In combination, these diseases are responsible for the deaths of 50 million people
annually, according to the World Health Organization. However, the advent of therapeutic
immunologics is expected to significantly reduce the associated morbidity and mortality,
particularly for oncologic diseases. Currently, 15 immuno-oncologic (IO) treatments are
commercially available and comprise a growing market that is expected to reach $100B by 2022.
IO therapeutics effectively attack cancer by selectively binding tumor-specific protein domains on
the cell surface, referred to as tumor-associated ectodomains (TAEs). However, many cancers
remain insensitive to available IO as effective and safe TAEs are difficult to identify.
Standard methods to detect TAEs are costly, time-consuming and limited in their ability to
discover novel targets, necessitating the development of innovative technologies to circumvent
this burden. RNAseq is currently the most effective method to discover novel splicing isoforms, is
high-throughput, sensitive and inexpensive. Envisagenics has been at the forefront of RNAseq-
based splicing characterization since the release of its SpliceCore® platform. Here, we propose
to develop SpliceIO, a novel drug discovery platform that integrates the Envisagenics’ SpliceCore
knowledge base with machine learning algorithms to enable rapid identification of aberrant
splicing-derived TAEs using RNAseq data. In this Phase I SBIR proposal, we will develop and
apply SpliceIO in the context of Acute Myeloid Leukemia, a cancer particularly resistant to IO but
highly associated with splicing mis-regulation and mutations within key spliceosome components.
We will identify and validate TAEs in vitro using established leukemia cell lines and patient-derived
bone marrow aspirates in collaboration with Dr. Omar Abdel-Wahab from Memorial Sloan
Kettering Cancer Center. Collectively, the aims outlined herein will allow us to both develop and
validate a novel splicing-dependent TAE identification platform to provide new sources of drug
targets while dramatically reducing the time and cost associated with their development. In
addition, this will allow Envisagenics to create new partnership opportunities for IO co-
development with pharmaceutical companies. If successful, this pipeline can be used to identify
drug targets and/or biomarkers for patient stratification in cancer and inflammatory diseases in
the context of an SBIR Phase II grant.
人单克隆抗体是增长最快的治疗方式之一,
FDA 批准超过 60 种化合物用于治疗感染、自身免疫、慢性炎症
这些疾病加在一起导致 5000 万人死亡。
然而,每年,根据世界卫生组织的数据,治疗方法的出现。
免疫学预计将显着降低相关的发病率和死亡率,
特别是针对肿瘤疾病,目前有 15 种免疫肿瘤 (IO) 治疗方法。
商业可用,并包含一个不断增长的市场,预计到 2022 年将达到 $100B。
IO 疗法通过选择性结合肿瘤特异性蛋白结构域来有效攻击癌症
细胞表面,称为肿瘤相关胞外域 (TAE)。
由于难以识别有效且安全的 TAE,因此对可用的 IO 仍然不敏感。
检测 TAE 的标准方法成本高昂、耗时且检测能力有限
发现新的目标,需要开发创新技术来规避
RNAseq 是目前发现新型剪接亚型最有效的方法。
Envisagenics 具有高通量、灵敏且廉价的优势,一直处于 RNAseq 的前沿。
自 SpliceCore® 平台发布以来,我们提出了基于熔接表征的方法。
开发 SpliceIO,这是一个集成了 Envisagenics 的 SpliceCore 的新型药物发现平台
具有机器学习算法的知识库,能够快速识别异常
在第一阶段 SBIR 提案中,我们将开发和使用 RNAseq 数据进行剪接衍生的 TAE。
将 SpliceIO 应用于急性髓系白血病,这是一种对 IO 特别耐药的癌症,但
与关键剪接体成分内的剪接错误调节和突变高度相关。
我们将使用已建立的白血病细胞系和患者来源的细胞在体外识别和验证 TAE
与纪念斯隆管理学院的 Omar Abdel-Wahab 博士合作进行骨髓抽吸
总的来说,本文概述的目标将使我们能够发展和发展。
验证新型剪接依赖性 TAE 识别平台以提供新的药物来源
目标,同时大大减少与其开发相关的时间和成本。
此外,这将使 Envisagenics 能够为 IO co- 创造新的合作机会
如果成功,该管道可用于识别制药公司。
用于癌症和炎症性疾病患者分层的药物靶点和/或生物标志物
SBIR 第二阶段拨款的背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARTIN AKERMAN其他文献
MARTIN AKERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARTIN AKERMAN', 18)}}的其他基金
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
- 批准号:
10647773 - 财政年份:2022
- 资助金额:
$ 30.15万 - 项目类别:
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
- 批准号:
10482502 - 财政年份:2022
- 资助金额:
$ 30.15万 - 项目类别:
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
- 批准号:
10838973 - 财政年份:2022
- 资助金额:
$ 30.15万 - 项目类别:
SpliceCore: A cloud-based platform to detect, quantify and interpret alternative splicing variation from next-generation sequencing data.
SpliceCore:一个基于云的平台,用于检测、量化和解释下一代测序数据中的选择性剪接变异。
- 批准号:
8980250 - 财政年份:2015
- 资助金额:
$ 30.15万 - 项目类别:
相似海外基金
Adhesion GPCR regulation of acute myeloid leukemia stem cells - Resubmission - 1
急性髓系白血病干细胞的粘附 GPCR 调节 - 重新提交 - 1
- 批准号:
10361510 - 财政年份:2021
- 资助金额:
$ 30.15万 - 项目类别:
Adhesion GPCR regulation of acute myeloid leukemia stem cells - Resubmission - 1
急性髓系白血病干细胞的粘附 GPCR 调节 - 重新提交 - 1
- 批准号:
10211328 - 财政年份:2021
- 资助金额:
$ 30.15万 - 项目类别:
Adhesion GPCR regulation of acute myeloid leukemia stem cells - Resubmission - 1
急性髓系白血病干细胞的粘附 GPCR 调节 - 重新提交 - 1
- 批准号:
10579217 - 财政年份:2021
- 资助金额:
$ 30.15万 - 项目类别:
Large scale single-cell gene rearrangement detection with a microfluidic device
利用微流控装置进行大规模单细胞基因重排检测
- 批准号:
10454909 - 财政年份:2020
- 资助金额:
$ 30.15万 - 项目类别:
Large scale single-cell gene rearrangement detection with a microfluidic device
利用微流控装置进行大规模单细胞基因重排检测
- 批准号:
10737781 - 财政年份:2020
- 资助金额:
$ 30.15万 - 项目类别: