SpliceCore: A cloud-based platform to detect, quantify and interpret alternative splicing variation from next-generation sequencing data.

SpliceCore:一个基于云的平台,用于检测、量化和解释下一代测序数据中的选择性剪接变异。

基本信息

  • 批准号:
    8980250
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-06 至 2017-03-05
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): This Small Business Innovation Research (SBIR) Phase I project will yield the first prototype of SpliceCore, a cloud-based resource for the discovery, analysis and interpretation of Alternative Splicing (AS) from RNA-seq data. 15% of all known diseases are triggered by defects in AS, an mRNA maturation process that conveys functional diversity to genes. Defective AS is treatable by small molecules and RNA therapeutic compounds, some of which are currently in clinical trials. SpliceCore will discover new drug targets and biomarkers by extracting disease-relevant AS events from RNA-seq data. The SpliceCore suite combines three algorithms developed and validated at Cold Spring Harbor Laboratory (CSHL): SpliceTrap, for the detection of AS profiles; SpliceDuo, for the identification of significant AS variation; and SpliceImpact, for the prioritization of biologically relevant AS events with therapeutic potential. We are currently applying these algorithms at CSHL for the discovery of AS events causative of Breast Cancer and to study the role of AS in the mechanism of the Spinal Muscular Atrophy disease. The Transcriptomics market was valued at $1.7 billion in 2013 and it is expected to reach $3.7 billion by 2019 at a CAGR of 13.7% from 2014 to 2019. RNA-seq data is quickly accumulating in public repositories such as The Cancer Genome Atlas (TCGA), Geuvadis and the ENCODE project. It is expected that the number of pre-clinical studies involving AS profiling will increase as a result of the reduced costs of Next Generation Sequencing and the early success of RNA therapeutics. SpliceCore will reduce the cost, time and complexity associated with AS analysis. To deliver a commercial prototype, it is necessary to anticipate the demands of multiple users operating simultaneously in a cloud-based environment. Our objective for this project is to investigate cost-effective computing strategies that comply with user-tailored specifications. Therefore our aims are (1) to develop data processing methods and predictive heuristics that increase computing performance while reducing cloud expenditures; (2) to increase detection sensitivity by enabling the discovery of novel AS, and use this new capacity to generate a database for cancer-specific AS events; and (3) Improve SpliceImpact biological interpretation by developing human-computer interaction through object recognition and new quantitative metrics that capitalize on "omics" datasets. There is a great challenge in the market in making cost- effective, fast and robust data analysis with experimentally testable solutions which Envisagenics innovative technology could relief. Envisagenics has a tremendous opportunity due to the increased demand for AS analysis in the biomedical sector, reinforced by new high-throughput capabilities and promising clinical trials. This work is a close collaboration with one of the leading bioinformaticians in the AS field, Dr. Gunnar Rätsch Associate Member at Memorial Sloan-Kettering Institute for Cancer Research, expert in computational methods for the analysis of big biomedical data and the renown scientists Dr. Adrian Krainer, Professor at Cold Spring Harbor Laboratory, who has deciphered much of the AS mechanism and its implications to Cancer and other genetic disorders.
 描述(由申请人提供):这个小型企业创新研究 (SBIR) 第一阶段项目将产生 SpliceCore 的第一个原型,这是一种基于云的资源,用于从 RNA-seq 数据中发现、分析和解释选择性剪接 (AS)。 15% 的已知疾病是由 AS 缺陷引发的,AS 是一种向基因传递功能多样性的 mRNA 成熟过程,有缺陷的 AS 可以通过小分子和 RNA 治疗化合物进行治疗,其中一些目前正在进行临床试验。 SpliceCore 将通过从 RNA-seq 数据中提取与疾病相关的 AS 事件来发现新的药物靶点和生物标志物。 SpliceCore 套件结合了冷泉港实验室 (CSHL) 开发和验证的三种算法:SpliceTrap,用于检测 AS 配置文件;用于识别显着的 AS 变异;以及 SpliceImpact,用于优先考虑具有治疗潜力的生物学相关的 AS 事件。我们目前正在 CSHL 应用这些算法来发现 AS 事件的病因。 2013 年,转录组学市场价值为 17 亿美元,预计到 2019 年将达到 37 亿美元,2014 年至 2019 年的复合年增长率为 13.7%。 RNA-seq 数据正在癌症基因组图谱 (TCGA) 等公共存储库中快速积累, Geuvadis 和 ENCODE 项目预计,由于下一代测序成本的降低以及 SpliceCore 的早期成功将降低成本、时间和复杂性,涉及 AS 分析的临床前研究数量将会增加。为了提供商业原型,有必要预测在基于云的环境中同时运行的多个用户的需求,我们该项目的目标是研究符合用户定制的经济有效的计算策略。因此,我们的目标是(1)开发数据处理方法和预测启发法,以提高计算性能,同时减少云支出;(2)通过发现新颖的 AS 来提高检测灵敏度,并使用这种新功能生成数据库。 (3) 通过对象识别和利用“组学”数据集的新定量指标来开发人机交互,从而改进 SpliceImpact 生物学解释。快速、稳健的数据分析由于生物医学领域对 AS 分析的需求不断增加,Envisagenics 的创新技术可以缓解这一问题,并通过新的高通量能力和有前景的临床试验进行了密切合作。 AS 领域领先的生物信息学家、纪念斯隆-凯特琳癌症研究所副会员、生物医学大数据分析计算方法专家 Gunnar Rätsch 博士以及著名科学家 Adrian 博士Krainer 是冷泉港实验室的教授,他破译了许多 AS 机制及其对癌症和其他遗传性疾病的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARTIN AKERMAN其他文献

MARTIN AKERMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARTIN AKERMAN', 18)}}的其他基金

Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
  • 批准号:
    10647773
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
  • 批准号:
    10482502
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
  • 批准号:
    10838973
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
A Software Platform for the Identification of Cell Surface Antigens Using RNA-seq Data
使用 RNA-seq 数据识别细胞表面抗原的软件平台
  • 批准号:
    9909639
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:

相似国自然基金

TRIM25介导的泛素化及ISGylation通过选择性剪接和糖代谢调控髓细胞分化
  • 批准号:
    82370111
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
ac4C乙酰化修饰的HnRNP L选择性剪接EIF4G1调控糖代谢重编程介导前列腺癌免疫检查点阻断治疗无应答的机制研究
  • 批准号:
    82303784
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
由CathepsinH介导的YAP选择性剪接在辐射诱导细胞死亡及辐射敏感性中的作用
  • 批准号:
    82373527
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于scRNA-seq的RNA选择性剪接探究哺乳动物早期胚胎发育调控机制
  • 批准号:
    62371265
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PRMT5选择性剪接异构体通过甲基化PDCD4调控肝癌辐射敏感性的机制研究
  • 批准号:
    82304081
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A precision tumor neoantigen identification pipeline for cytotoxic T-lymphocyte-based cancer immunotherapies
用于基于细胞毒性 T 淋巴细胞的癌症免疫疗法的精准肿瘤新抗原识别流程
  • 批准号:
    10581488
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
A precision tumor neoantigen identification pipeline for cytotoxic T-lymphocyte-based cancer immunotherapies
用于基于细胞毒性 T 淋巴细胞的癌症免疫疗法的精准肿瘤新抗原识别流程
  • 批准号:
    10332251
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
Genome-wide mapping and characterization of exitrons in human cancer
人类癌症中激子的全基因组图谱和表征
  • 批准号:
    10362364
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
Genome-wide mapping and characterization of exitrons in human cancer
人类癌症中激子的全基因组图谱和表征
  • 批准号:
    10631029
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
Computational approaches to delineate non-canonical splicing events
描述非规范剪接事件的计算方法
  • 批准号:
    10630854
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了