Methane-oxidizing bacterial communities: A novel source of bioactive chemical diversity

甲烷氧化细菌群落:生物活性化学多样性的新来源

基本信息

  • 批准号:
    9905580
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-18 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Candidate and Environment During graduate school in Dr. Matthew Bogyo's lab at Stanford University, I synthesized and applied chemical probes to both examine the activation mechanism of a toxin secreted by Clostridium difficile, a major hospital-acquired pathogen, and to understand how host cell death is triggered by Salmonella infection. I subsequently joined Dr. Mary Lidstrom's lab at the University of Washington for postdoctoral training in bacterial genetics and physiology, where I recently developed genetic tools for methane-oxidizing bacteria that have enabled both metabolic engineering and new physiological studies in these organisms. My long-term career goal is to establish a successful research program focused on leveraging biological context to understand the regulation and function of bacterially-produced secondary metabolites. My objective using this approach is to discover novel bioactive compounds with therapeutic potential, such as antibiotics, that will be used in the clinic. My scientific background at the interface of chemistry and bacterial genetics places me in a good position to accomplish this goal. However, I have not yet specifically worked on determining the function and structure of microbial secondary metabolites. Therefore, my immediate career goal is to obtain training enabled by the K99/R00 award in secondary metabolite discovery and characterization using a model methane-oxidizing bacterial community as a novel source of bioactive chemical diversity in order to transition to an independent faculty position. I have an excellent mentoring team to help me achieve these goals. At the UW I will be co-mentored by Dr. Mary Lidstrom, a distinguished bacterial physiologist and geneticist with expertise in bacteria that grow on one-carbon compounds, and Dr. Peter Greenberg, an expert and pioneer in the fields of quorum sensing and related forms of bacterial chemical communication. I will also receive guidance on secondary metabolite isolation and structural elucidation from renowned natural product chemist Dr. Jon Clardy of Harvard Medical School, and will learn to detect these compounds directly on agar surfaces using microbial imaging mass spectrometry at the University of California, San Diego in the lab of Pieter Dorrestein, the pioneer of the technique. I will also supplement this training by attending a course on microbial secondary metabolites. Furthermore, I will take advantage of the excellent academic environment at the UW to help me achieve my research and career goals. This will include using state-of-the-art core facilities for mass spectrometry and genomics, as well attending seminars, workshops, and courses on professional and career development offered by various organizations on campus. I will also receive one-on-one guidance on academic careers from mentors on my advisory committee. Together, these experiences will ensure that I will obtain the scientific experience and professional training necessary to successfully establish an independent research group studying the regulation and biological function of bacterially-produced secondary metabolites. Research Most therapeutics used today are derived from natural products, including microbially-produced secondary metabolites. However, the pipeline of these compounds has been diminishing over time, particularly in the case of novel antibiotic scaffolds. New sources of biosynthetic chemical diversity are therefore needed. Modern sequencing efforts have revealed large numbers of biosynthetic gene clusters (BGCs) in the genomes of bacteria not traditionally used for secondary metabolite discovery. However, in many cases these BGCs are not expressed at high levels in the laboratory, and the function of their products is unknown. Many diffusible secondary metabolites have evolved to mediate interactions between co-evolved species in the environment. Therefore, in order to activate and characterize the biological function of novel BGCs it is important to add biological context. The research proposed here will use a model methane-oxidizing bacterial community as a novel source of bioactive secondary metabolites. In this community methane-oxidizing bacteria support bacteria that cannot oxidize methane themselves, and the genome sequences of community isolates contain hundreds of predicted novel BGCs. Preliminary screening of community isolates alone and in pairwise interaction assays has already revealed multiple sources of antibacterial activity. The results of this work will: (1) use intra- and interspecies interactions in a metabolically-linked bacterial community to activate and characterize novel bioactive secondary metabolites, (2) determine the structure and function of a novel class of antibiotic, and (3) provide chemical probes for future studies examining how natural product-mediated interactions influence bacterial community composition, structure, and metabolic function.
 描述(由申请人提供):候选人和环境在斯坦福大学 Matthew Bogyo 博士的实验室读研究生期间,我合成并应用了化学探针来检查艰难梭菌(一种主要的医院获得性病原体)分泌的毒素的激活机制,为了了解沙门氏菌感染如何引发宿主细胞死亡,我随后加入了华盛顿大学 Mary Lidstrom 博士的实验室,接受细菌遗传学和生理学的博士后培训。最近开发了用于甲烷氧化细菌的遗传工具,使这些生物体的代谢工程和新的生理学研究成为可能。我的长期职业目标是建立一个成功的研究计划,重点是利用生物背景来了解细菌的调节和功能。我使用这种方法的目标是发现具有治疗潜力的新型生物活性化合物,例如抗生素,这些化合物将用于临床。我在化学和细菌遗传学领域的科学背景使我能够很好地完成这项工作。这个目标。我还没有专门致力于确定微生物次生代谢物的功能和结构,因此,我的近期职业目标是获得 K99/R00 奖提供的培训,以使用模型甲烷氧化细菌群落作为次生代谢物的发现和表征。生物活性化学多样性的新来源,以便过渡到独立的教职职位 我有一个优秀的指导团队来帮助我实现这些目标,在威斯康星大学,我将得到杰出的玛丽·利德斯特罗姆博士的共同指导。细菌生理学家和遗传学家,在单碳、化合物上生长的细菌方面拥有专业知识,彼得·格林伯格博士是群体感应和细菌化学通讯相关形式领域的专家和先驱,我还将获得有关次级代谢物分离和研究的指导。哈佛医学院著名天然产物化学家 Jon Clardy 博士的结构解析,并将在加州大学圣地亚哥分校的 Pieter Dorrestein 实验室学习使用微生物成像质谱法直接在琼脂表面检测这些化合物,我还将通过参加微生物次生代谢物课程来补充这一培训,此外,我将利用华盛顿大学优良的学术环境来帮助我实现我的研究和职业目标。最先进的质谱和基因组学核心设施,以及参加校园内各个组织提供的专业和职业发展研讨会、讲习班和课程,我还将获得导师对学术职业的一对一指导。在我的咨询委员会中,这些人在一起。经验将确保我获得成功建立独立研究小组所需的科学经验和专业培训,研究细菌产生的次生代谢物的调节和生物功能。 研究当今使用的大多数疗法都源自天然产物,包括微生物产生的次生代谢物。然而,随着时间的推移,这些化合物的管道正在减少,特别是在新型抗生素支架的情况下,因此需要新的生物合成化学多样性来源。 (BGC) 存在于传统上不用于发现次级代谢物的细菌基因组中,然而,在许多情况下,这些 BGC 在实验室中并没有高水平表达,并且其产物的功能是未知的,许多可扩散的次级代谢物已进化为介导。因此,为了激活和表征新型 BGC 的生物学功能,本文提出的研究将使用模型甲烷氧化细菌群落作为新型。在这个群落中,甲烷氧化细菌支持本身不能氧化甲烷的细菌,并且群落分离株的基因组序列包含数百个预测的新 BGC,单独对群落分离株的初步筛选和成对相互作用分析已经揭示了多种。这项工作的结果将:(1)利用代谢相关细菌群落中的种内和种间相互作用来激活和表征新的生物活性次级物质。代谢物,(2) 确定一类新型抗生素的结构和功能,(3) 为未来研究提供化学探针,研究天然产物介导的相互作用如何影响细菌群落组成、结构和代谢功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Webster Puri其他文献

Aaron Webster Puri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Webster Puri', 18)}}的其他基金

Methylotrophs: underexplored bacteria for discovering novel natural products and biochemistry
甲基营养菌:用于发现新型天然产物和生物化学的尚未开发的细菌
  • 批准号:
    10650386
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Methylotrophs: underexplored bacteria for discovering novel natural products and biochemistry
甲基营养菌:用于发现新型天然产物和生物化学的尚未开发的细菌
  • 批准号:
    10810046
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Methane-oxidizing bacterial communities: A novel source of bioactive chemical diversity
甲烷氧化细菌群落:生物活性化学多样性的新来源
  • 批准号:
    10171589
  • 财政年份:
    2016
  • 资助金额:
    $ 24.9万
  • 项目类别:
Methane-Oxidizing Bacterial Communities: A Novel Source Of Bioactive Chemical Diversity
甲烷氧化细菌群落:生物活性化学多样性的新来源
  • 批准号:
    9086651
  • 财政年份:
    2016
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似国自然基金

基于体外模拟评价的琼脂和卡拉胶调控肠道稳态机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
过氧化氢选择性催化琼脂脱硫反应机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
琼脂基Pickering乳液稳定剂的理性设计及稳定机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Cd(II)在NH2-Agar/PSS双网络水凝胶上的吸附行为及资源化工艺研究
  • 批准号:
    51708204
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
琼脂糖薄膜的化学改性及湿气驱动的能量转化机理研究
  • 批准号:
    51603068
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
  • 批准号:
    10698829
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
  • 批准号:
    10698829
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Establishment of a Cell-Based Screening Platform for DNA Encoded Libraries
DNA编码文库细胞筛选平台的建立
  • 批准号:
    10646635
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Antagonistic relationships among Acinetobacter isolates
不动杆菌分离株之间的拮抗关系
  • 批准号:
    10604520
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Identification of antimicrobial reagents against TB and ESKAPE pathogens from bacteria collected in Vietnam
从越南收集的细菌中鉴定针对 TB 和 ESKAPE 病原体的抗菌试剂
  • 批准号:
    10225275
  • 财政年份:
    2021
  • 资助金额:
    $ 24.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了