Stress-induced cell death mechanisms of fungi

应激诱导的真菌细胞死亡机制

基本信息

  • 批准号:
    9896588
  • 负责人:
  • 金额:
    $ 24.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Molecular cell death pathways are being extensively studied in mammalian cells. These genetically regulated cell death processes are critical for maintenance of human health, defense against infection and for successful cancer therapy, but their deregulation underlies disease pathology. Considerable progress towards delineating the molecular details has yielded successful designer drugs now entering the clinic, such as venetoclax that specifically targets anti-apoptotic BCL2 to trigger tumor cell death. In contrast, analogous approaches are not available for triggering intrinsic cell death pathways encoded by human pathogens such as fungi, bacteria and parasites because very little is known about the basic biology. The near complete lack of understanding of the relevant events in dying microbial cells is surprising given their importance as human pathogens. For example, fungal pathogens pose an increasing threat to public health, claiming 1.5 million lives annually worldwide. The long-standing assumption that microbial cells do not encode such intrinsic death pathways has delayed advancements in this direction. However, new rigorous evidence from multiple sources argues strongly in favor, and partially delineated death pathways in multi-cellular fungi provide additional compelling support. Here we propose to map the first molecularly defined death pathway in a single-cell fungal/yeast species, the laboratory workhorse Saccharomyces cerevisiae (Aim 1), and to initiate studies that extend this knowledge to a single-cell human fungal/yeast pathogen Cryptococcus neoformans, a major public health burden (Aim 2).
项目概要 哺乳动物细胞中的分子细胞死亡途径正在被广泛研究。这些基因调控 细胞死亡过程对于维持人类健康、防御感染和成功至关重要 癌症治疗,但它们的放松管制是疾病病理学的基础。划定方面取得重大进展 分子细节已经产生了成功的设计药物,现已进入临床,例如 Venetoclax 专门针对抗凋亡 BCL2 来触发肿瘤细胞死亡。相比之下,类似的方法并不 可用于触发由真菌、细菌等人类病原体编码的内在细胞死亡途径 寄生虫,因为人们对基本生物学知之甚少。对这个问题几乎完全缺乏了解 鉴于微生物细胞作为人类病原体的重要性,死亡微生物细胞中的相关事件令人惊讶。例如, 真菌病原体对公众健康构成越来越大的威胁,每年在全球夺走 150 万人的生命。这 长期以来关于微生物细胞不编码这种内在死亡途径的假设已经被推迟 朝这个方向的进展。然而,来自多个来源的新的严格证据有力地证明了这一点: 多细胞真菌中部分描绘的死亡途径提供了额外的令人信服的支持。 在这里,我们建议绘制单细胞真菌/酵母物种中第一个分子定义的死亡途径,即 实验室主力酿酒酵母(目标 1),并启动研究将这一知识扩展到 单细胞人类真菌/酵母病原体新型隐球菌,是一个主要的公共卫生负担(目标 2)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J. Marie Hardwick其他文献

J. Marie Hardwick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J. Marie Hardwick', 18)}}的其他基金

Conservation of programmed cell death across species
跨物种程序性细胞死亡的保守性
  • 批准号:
    10640365
  • 财政年份:
    2022
  • 资助金额:
    $ 24.56万
  • 项目类别:
Conservation of programmed cell death across species
跨物种程序性细胞死亡的保守性
  • 批准号:
    10640365
  • 财政年份:
    2022
  • 资助金额:
    $ 24.56万
  • 项目类别:
Molecular mechanisms of a neurodevelopmental seizure disorder
神经发育性癫痫病的分子机制
  • 批准号:
    10597690
  • 财政年份:
    2022
  • 资助金额:
    $ 24.56万
  • 项目类别:
Molecular mechanisms of a neurodevelopmental seizure disorder
神经发育性癫痫病的分子机制
  • 批准号:
    10433302
  • 财政年份:
    2022
  • 资助金额:
    $ 24.56万
  • 项目类别:
Non-apoptotic caspase activity in neurons
神经元中的非凋亡 caspase 活性
  • 批准号:
    9093400
  • 财政年份:
    2016
  • 资助金额:
    $ 24.56万
  • 项目类别:
Mechanisms of Neurodegeneration
神经退行性变的机制
  • 批准号:
    8639202
  • 财政年份:
    2013
  • 资助金额:
    $ 24.56万
  • 项目类别:
Mechanisms of Neurodegeneration
神经退行性变的机制
  • 批准号:
    8725761
  • 财政年份:
    2013
  • 资助金额:
    $ 24.56万
  • 项目类别:
Mechanisms of Neurodegeneration
神经退行性变的机制
  • 批准号:
    8841838
  • 财政年份:
    2013
  • 资助金额:
    $ 24.56万
  • 项目类别:
"Conserved Cell Death Pathways in Mammals and Yeast"
“哺乳动物和酵母中保守的细胞死亡途径”
  • 批准号:
    7993612
  • 财政年份:
    2009
  • 资助金额:
    $ 24.56万
  • 项目类别:
"Conserved Cell Death Pathways in Mammals and Yeast"
“哺乳动物和酵母中保守的细胞死亡途径”
  • 批准号:
    7415174
  • 财政年份:
    2006
  • 资助金额:
    $ 24.56万
  • 项目类别:

相似国自然基金

日粮AFB1在反刍动物肝脏中代谢激活和诱导肝细胞凋亡的分子机理研究
  • 批准号:
    31902187
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
组织器官衰老致退行性演变多示踪剂全身动态PET显像研究
  • 批准号:
    91949121
  • 批准年份:
    2019
  • 资助金额:
    68.0 万元
  • 项目类别:
    重大研究计划
PHLPP1/Akt/Mst1信号通路调控的细胞凋亡和自噬在缺血后处理对糖尿病心肌保护失敏感中的作用及机制研究
  • 批准号:
    81800721
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
Grina调控斑马鱼耐寒能力的分子机理研究
  • 批准号:
    31872554
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
大上皮嵴支持细胞在哺乳动物耳蜗发育中的关键作用
  • 批准号:
    81873698
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nuclear and chromatin aberrations during non-apoptotic cell death in C. elegans and mammals
线虫和哺乳动物非凋亡细胞死亡过程中的核和染色质畸变
  • 批准号:
    10723868
  • 财政年份:
    2023
  • 资助金额:
    $ 24.56万
  • 项目类别:
Targeting the microtubule cytoskeleton to promote cavernous nerve regeneration and erectile function after injury
靶向微管细胞骨架促进损伤后海绵体神经再生和勃起功能
  • 批准号:
    10719124
  • 财政年份:
    2023
  • 资助金额:
    $ 24.56万
  • 项目类别:
Multimodal control of mitochondrial energetics to shape biological aging
线粒体能量的多模式控制塑造生物衰老
  • 批准号:
    10864185
  • 财政年份:
    2023
  • 资助金额:
    $ 24.56万
  • 项目类别:
Mechanisms of immunological memory-mediated pathogenesis in chronic autoimmune uveitis
慢性自身免疫性葡萄膜炎免疫记忆介导的发病机制
  • 批准号:
    10657851
  • 财政年份:
    2023
  • 资助金额:
    $ 24.56万
  • 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
  • 批准号:
    10717111
  • 财政年份:
    2023
  • 资助金额:
    $ 24.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了