Natural engineering of multi-electron biological oxidation & reduction
多电子生物氧化自然工程
基本信息
- 批准号:7531812
- 负责人:
- 金额:$ 35.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-02-01 至 2010-11-30
- 项目状态:已结题
- 来源:
- 关键词:AgeBioenergeticsBiologicalBiological ModelsBiomimeticsCatalysisCatalytic DomainChargeChemicalsChemistryComplexConsensusCoupledCouplingCytochromesDatabasesDevelopmentDevicesDiffusionDiseaseElectrodesElectron TransportElectron Transport Complex IIIElectronsElementsEnergy SupplyEngineeringEnvironmentFlavinsFoodFoundationsFreedomGenerationsGlobinGrantGuidelinesHealthHemeHumanHydrocarbonsHydrogen PeroxideHydroquinonesIntegral Membrane ProteinInvestigationKineticsLeftLifeLigand BindingLightMembraneMembrane PotentialsMetabolicMetabolismMethodsMitochondriaModelingModificationMono-SNADH dehydrogenase (ubiquinone)NatureNeurofibrillary TanglesNiacinamideOnset of illnessOperative Surgical ProceduresOxidation-ReductionOxidoreductaseOxygenOxygenasesPeroxidesPhotosynthetic Reaction CentersPhysiologicalPlaguePlant RootsPlantsPositioning AttributeProcessPropertyProtein EngineeringProteinsProtonsQuinonesReactionReactive Oxygen SpeciesRegulationResearch PersonnelResearch Project GrantsResolutionResourcesRespirationRespiratory ChainSeriesSiteSolutionsStressStructureSuperoxidesTestingThermodynamicsTimeWaterWorkbasecell growth regulationcofactorcytochrome ccytochrome c oxidasedesignengineering designhydroquinoneinsightmicroorganismmodel designnanoscalenovelphotosystemrespiratoryscaffoldsimulationtheories
项目摘要
The energetic foundation of cellular activity and its regulation relies on a string of oxidoreductase proteins in
biological oxidative and reductive metabolism and respiratory membrane energy conversion. The
mechanisms of many catalytic sites of substrate oxidation-reduction and energy conversion, particularly in
mitochondria! respiration, have proven to be difficult to access experimentally due to natural complexity and
fragility. They remain poorly understood. Our proposal aims to reveal the natural engineering of the redox-
coupled proton exchange and transfer operating at these sites of multi-electron cofactor and substrate
oxidation-reduction. Our approach builds on our engineering guidelines for protein electron tunneling,
strengthened in the last grant period, to inform the de novo design and assembly of simple and robust alpha-
helical proteins intended to serve as protein-based models, maquettes, for multi-electron catalysis.
Maquettes will be designed to provide the simplest water-soluble or trans-membrane structures that can
capture the functional properties of natural redox centers. Their simplicity and adaptability allow us to
investigate catalytic functional problems that remain unsolved in the respiratory chain. Maquettes will be
activated with light and electrometric methods in solution and on electrodes to dissect step-by-step the
thermodynamics and kinetics of electron transfer and proton exchange. Maquettes will incorporate all key
two-electron, multi-proton cofactors/substrates quinone, nicotinamide and flavin, and the two-and four-
electron substrate O2. We are positioned to focus on the problem of reversible energy conversion catalysis of
hydroquinone-quinone in the Qo site of the cytochrome bd aiming to determine the mechanistic root of
medically harmful short-circuits and radical generation. We will extend our maquette creation of a stable O2
ferrous heme state, to examine two- and four-electron O2 reduction and the physiologically important two-
electron chemistries of NO and H2O2. With stable and adaptable maquettes, we can exploit physiological
chemistry in the development of nanoscale devices.
The breakdown of food by oxygen respiration in humans produces all the energy needed for a healthy life
and is a central part of cellular regulation. It is normal that there is a steady slow release of oxygen radicals
that over time cause cellular damage, aging and disease. Under stress, and in during many surgical
procedures bursts of radicals can accelerate these deleterious processes. The research of this grant
describes a new way to understand the processes underlying healthy oxidative energy supply and control as
well as deleterious radical generation. With progress we will be better predict and track the onset of disease
and act to slow it or reverse it.
细胞活性及其调节的能量基础依赖于一串氧化还原酶蛋白
生物氧化和还原的代谢和呼吸膜能量转化。这
底物氧化还原和能量转化的许多催化位点的机制,特别是在
线粒体!呼吸,由于自然复杂性和
脆弱性。他们仍然很了解。我们的建议旨在揭示氧化还原的自然工程
耦合质子交换和转移在多电子辅因子和底物的这些位置运行
还原氧化。我们的方法基于我们的蛋白质电子隧道工程指南,
在最后一个赠款期间得到加强,以告知从头设计和组装简单,强大的alpha-
螺旋蛋白旨在用作基于蛋白质的模型,用于多电子催化。
小块将设计为提供最简单的水溶性或跨膜结构
捕获天然氧化还原中心的功能特性。它们的简单性和适应性使我们能够
研究呼吸链中仍未解决的催化功能问题。马奎特会
用溶液和电极上的光和电量表激活,以分步剖析
电子传递和质子交换的热力学和动力学。 maquettes将包含所有钥匙
两电子,多质子辅助因子/底物奎因酮,烟酰胺和黄素,以及两个和四个 -
电子底物O2。我们可以专注于可逆的能量转化催化的问题
在细胞色素BD的QO位点中的氢醌 - 醌旨在确定机械根
医学上有害的短路和激进的一代。我们将扩展我们的稳定O2的制作
亚美蛋白血红素状态,以检查二元和四电子O2的降低以及生理上重要的两种
NO和H2O2的电子化学。凭借稳定且适应能力的毛孔,我们可以利用生理
纳米级设备开发的化学。
人类氧气呼吸对食物的细分产生健康生活所需的所有能量
是细胞调节的中心部分。正常的是,氧自由基的稳定缓慢释放
随着时间的流逝,会导致细胞损伤,衰老和疾病。在压力下,在许多手术期间
过程爆发可以加速这些有害过程。这笔赠款的研究
描述了一种理解健康氧化能量供应和控制过程的新方法
以及有害激进的一代。随着进步,我们将更好地预测并跟踪疾病的发作
并采取行动以减慢或逆转它。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER LESLIE DUTTON其他文献
PETER LESLIE DUTTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER LESLIE DUTTON', 18)}}的其他基金
PROTEIN CONFORMATIONAL CHANGE TRIGGERED BY NI-BCHL-A EXCITATION
NI-BCHL-A 兴奋引发的蛋白质构象变化
- 批准号:
7373141 - 财政年份:2006
- 资助金额:
$ 35.93万 - 项目类别:
PROTEIN CONFORMATIONAL CHANGE TRIGGERED BY NI-BCHL-A EXCITATION
NI-BCHL-A 兴奋引发的蛋白质构象变化
- 批准号:
7183287 - 财政年份:2005
- 资助金额:
$ 35.93万 - 项目类别:
PROTEIN CONFORMATIONAL CHANGE TRIGGERED BY NI-BCHL-A EXCITATION
NI-BCHL-A 兴奋引发的蛋白质构象变化
- 批准号:
6976513 - 财政年份:2004
- 资助金额:
$ 35.93万 - 项目类别:
The Natural Engineering of Internal Electric Fields in Redox Proteins at Differen
Differen 氧化还原蛋白内部电场的自然工程
- 批准号:
6706156 - 财政年份:2003
- 资助金额:
$ 35.93万 - 项目类别:
ELECTRIC FIELD EFFECTS ON PHOTOSYSTEM II ELECTRON TRANSFER
电场对光系统 II 电子传输的影响
- 批准号:
6480854 - 财政年份:2001
- 资助金额:
$ 35.93万 - 项目类别:
MAKING, MEASURING, AND MODULATING ELECTRIC FIELDS WITH SYNTHETIC PROTEINS
用合成蛋白质制造、测量和调节电场
- 批准号:
6336544 - 财政年份:2000
- 资助金额:
$ 35.93万 - 项目类别:
ELECTRIC FIELD EFFECTS ON PHOTOSYSTEM II ELECTRON TRANSFER
电场对光系统 II 电子传输的影响
- 批准号:
6328058 - 财政年份:2000
- 资助金额:
$ 35.93万 - 项目类别:
相似国自然基金
脂肪源生物纳米颗粒通过抑制TRPV4激活保护线粒体生物能学调控VILI内皮屏障稳态的机制研究
- 批准号:82200094
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
脂肪源生物纳米颗粒通过抑制TRPV4激活保护线粒体生物能学调控VILI内皮屏障稳态的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高寒草甸生态系统小型鸟兽生物能学的研究
- 批准号:38670786
- 批准年份:1986
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 35.93万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 35.93万 - 项目类别:
A mechanism of lipid accumulation in brown adipose tissue
棕色脂肪组织中脂质积累的机制
- 批准号:
10605981 - 财政年份:2023
- 资助金额:
$ 35.93万 - 项目类别:
Metabolic mechanisms of cognitive decline in aging and AD mediated by inflammatory PGE2 signaling
炎症 PGE2 信号介导的衰老和 AD 认知能力下降的代谢机制
- 批准号:
10590390 - 财政年份:2023
- 资助金额:
$ 35.93万 - 项目类别:
Feasibility of Improving Glycemia to Prevent Alzheimer's Disease
改善血糖预防阿尔茨海默病的可行性
- 批准号:
10633688 - 财政年份:2023
- 资助金额:
$ 35.93万 - 项目类别: