Molecular concepts that monitor methionine metabolism
监测蛋氨酸代谢的分子概念
基本信息
- 批准号:9892665
- 负责人:
- 金额:$ 4.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmino AcidsAnimalsApoptosisBacteriaBiological ProcessCDC6 geneCaloric RestrictionCaloriesCell CycleCell Cycle ArrestCell Cycle CheckpointCell ProliferationCell divisionCell physiologyCellsCellular StressChromatinDNADependenceDevelopmentDietDiseaseDrug TargetingEatingEpigenetic ProcessEventGoalsHomocysteineHumanHypersensitivityIndividualInvestigationLinkLiteratureLongevityMalignant NeoplasmsMeasuresMetabolicMetabolic PathwayMetabolismMethionineMethionine Metabolism PathwayMethylationMolecularMonitorNatureNutrientOrganismPathway interactionsPhysiologyPositioning AttributePre-Replication ComplexProtein MethylationProtein Phosphatase 2A Regulatory Subunit PR53ProteinsRNARNA CapsRNA methylationReactionReportingResearchRoleS PhaseS-AdenosylhomocysteineS-AdenosylmethionineSignal PathwaySignal TransductionSolid NeoplasmStructureSystemTherapeuticTissuesTranslationsWhole OrganismYeastsaddictionage relatedcancer cellcancer therapycell behaviorinsightinterestleukemianew therapeutic targetnovelnovel therapeutic interventionpreventresponsesensortumoruptake
项目摘要
Project Summary
Methionine occupies a special place among amino acids. This is best illustrated by the phenomenon
called “methionine-dependence of cancer”. This cancer specific metabolic need describes the
behavior of cells when grown in medium lacking methionine but supplemented with the immediate
metabolic precursor homocysteine. Non-tumorigenic cells maintain their proliferation rate in
homocysteine, but the vast majority of cancer cells, independent of their tissue origin, induce cell
cycle arrest followed by apoptosis when cultured in homocysteine medium. Importantly, methionine-
dependence is not only observed in cultured cancer cells. Solid tumors and leukemias also depend on
high flux through the metabolic pathways connected to methionine. Furthermore, longevity is
strikingly connected to dietary methionine uptake. Caloric restriction is well known to increase
longevity in many organisms. This effect is mimicked by restricting methionine in an otherwise rich
diet. Conversely, supplementing a low-calorie diet with methionine eliminates the benefits of caloric
restriction for longevity.
This proposal seeks understanding of the molecular effects that fluctuating methionine levels have on
cellular and organismal physiology, as well as an explanation for the methionine dependence of
cancer. Reports in the literature and our preliminary studies suggest that methionine uses unique
signaling pathways that have not been explored at the molecular level. We find that the canonical
amino acid and nutrient responsive TOR pathway is not involved in measuring or signaling methionine
levels. Furthermore, the downstream metabolites S-adenosylmethionine (SAM) and S-adenosyl-
homocysteine (SAH) — and not methionine itself — appear to be the effector metabolites for both the
effects on cancer cell proliferation and longevity. SAM is the primary cellular methyl donor and the
SAM/SAH ratio is generally considered the determinant of the cellular methylation potential. As such
these metabolites are ideally positioned to signal methionine levels through specific methylation
events. We have identified methylation events on groups of RNAs and specific proteins as candidates
that link methionine levels to specific cellular responses. One goal of this proposal is to identify the
critical RNAs and proteins that are controlled through methylation and show a hypersensitive
response to fluctuations in methionine or SAM/SAH concentrations. The sensitive reaction to varying
methylation allows these RNAs and proteins to trigger signals and ultimately cellular pathways that
connect methionine metabolism to cell proliferation and other cellular functions. The second goal of
the proposal is thus to identify these pathways and initiate investigation of how they connect
metabolism with cell physiology at the molecular level.
Understanding the molecular concepts that integrate methionine metabolism with other cellular
functions promise new therapeutic strategies for treatment of cancer and other age-related disorders.
Thus, this proposal aims to development molecular insight into a fundamental, so far molecularly
unexplored, biological process with great potential for therapeutic exploitation.
项目概要
蛋氨酸在氨基酸中占有特殊的地位,这一现象最好地说明了这一点。
这种癌症特定的代谢需求被称为“癌症的蛋氨酸依赖性”。
当细胞在缺乏蛋氨酸但补充了立即的培养基中生长时的行为
代谢前体同型半胱氨酸。
同型半胱氨酸,但绝大多数癌细胞,无论其组织来源如何,都会诱导细胞
在同型半胱氨酸培养基中培养时,细胞周期停滞,随后发生细胞凋亡。重要的是,蛋氨酸-。
依赖性不仅存在于培养的癌细胞中,实体瘤和白血病也存在依赖性。
通过与蛋氨酸相关的代谢途径的高通量此外,寿命也很长。
众所周知,热量限制会增加饮食中蛋氨酸的摄入量。
在许多生物体中,通过限制蛋氨酸的含量来模拟这种效应。
饮食。,线下用蛋氨酸补充低热量饮食消除了热量的好处
长寿的限制。
该提案旨在了解蛋氨酸水平波动对分子的影响
细胞和生物生理学,以及对蛋氨酸依赖性的解释
文献报告和我们的初步研究表明,蛋氨酸具有独特的用途。
我们发现尚未在分子水平上探索的信号通路。
氨基酸和营养响应 TOR 通路不参与蛋氨酸的测量或信号传导
此外,下游代谢物 S-腺苷甲硫氨酸 (SAM) 和 S-腺苷-
同型半胱氨酸(SAH)——而不是蛋氨酸本身——似乎是这两种蛋白的效应代谢物。
SAM 是主要的细胞甲基供体和对癌细胞增殖和寿命的影响。
SAM/SAH 比率通常被认为是细胞甲基化潜力的决定因素。
这些代谢物非常适合通过特定的甲基化来发出蛋氨酸水平信号
我们已经确定了 RNA 组和特定蛋白质的甲基化事件作为候选事件。
该提案的一个目标是确定蛋氨酸水平与特定细胞反应的关系。
通过甲基化控制的关键 RNA 和蛋白质,表现出高度敏感
对蛋氨酸或 SAM/SAH 浓度波动的响应 对变化的敏感反应。
甲基化允许这些 RNA 和蛋白质触发信号并最终触发细胞通路,
将蛋氨酸代谢与细胞增殖和其他细胞功能联系起来。
因此,建议确定这些路径并开始调查它们如何连接
新陈代谢与分子水平上的细胞生理学。
了解将蛋氨酸代谢与其他细胞整合的分子概念
功能有望为治疗癌症和其他与年龄相关的疾病提供新的治疗策略。
因此,该提案旨在将分子洞察力发展为迄今为止分子水平的基本原理
未经探索的生物过程,具有巨大的治疗开发潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kaiser其他文献
Peter Kaiser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kaiser', 18)}}的其他基金
Developing corrector small molecules for reactivation of mutant p53 in cancer
开发用于重新激活癌症中突变 p53 的校正小分子
- 批准号:
10512976 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Developing corrector small molecules for reactivation of mutant p53 in cancer
开发用于重新激活癌症中突变 p53 的校正小分子
- 批准号:
10675004 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Regulation by Proteolysis-Independent Ubiquitination
不依赖蛋白水解的泛素化调节
- 批准号:
7854558 - 财政年份:2009
- 资助金额:
$ 4.88万 - 项目类别:
Identification of Small Molecules for Reactivation of p53 Cancer Mutants
鉴定用于 p53 癌症突变体再激活的小分子
- 批准号:
7617518 - 财政年份:2008
- 资助金额:
$ 4.88万 - 项目类别:
相似国自然基金
母乳低聚糖调控动物双歧杆菌F1-7代谢芳香氨基酸机制的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泌乳反刍动物主要组织器官AA代谢调控途径与机制研究
- 批准号:31772623
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
氨基酸转运体CD98/LAT1维持mTORC1低水平在调控中枢神经系统胶质瘤肿瘤干细胞干性上的意义和机制
- 批准号:81702939
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
氨基酸代谢在银屑病mTOR-HIF-1α通路调控异常中的机制研究
- 批准号:81673056
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
溶质载体SLC38A3通过mTOR信号促进非小细胞肺癌的转移
- 批准号:81602509
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An urinary drug disposing approach for treatment of bladder Cancer
一种治疗膀胱癌的泌尿药物处置方法
- 批准号:
10737090 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Glomerular and Tubular Function in the Recovering Kidney
肾脏恢复中的肾小球和肾小管功能
- 批准号:
10587898 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Investigating Astrocytic Glutamate and Potassium Dynamics in the Healthy and Injured Brain
研究健康和受伤大脑中星形胶质细胞谷氨酸和钾的动态
- 批准号:
10754425 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Development of approaches for inducible trophoblast-specific gene modulation: the role of trophoblast Lat1 in the regulation of placental function and fetal growth
开发诱导性滋养层特异性基因调节方法:滋养层 Lat1 在胎盘功能和胎儿生长调节中的作用
- 批准号:
10656023 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别: