Heme Oxygenase-1 in Lung Ischemia-Reperfusion Injury
血红素加氧酶 1 在肺缺血再灌注损伤中的作用
基本信息
- 批准号:7608696
- 负责人:
- 金额:$ 41.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-04-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acute Lung InjuryAnoxiaAnti-Inflammatory AgentsAnti-inflammatoryAntioxidantsApoptosisApoptoticAwardBiliverdineBlood flowCarbon MonoxideCatalysisCell DeathCellsCoagulation ProcessDevelopmentEndothelial CellsEndotheliumEnzymesEventExcisionFunctional disorderGenesGoalsHeat shock proteinsHeat-Shock Proteins 70HemeHyperoxiaIn VitroInjuryInterventionIschemiaLeadLifeLungLung TransplantationMediatingMitogen-Activated Protein KinasesMolecularMusOperative Surgical ProceduresOrganOrgan TransplantationOxidantsOxygenasesPathway interactionsPropertyProtein IsoformsProteinsPulmonary EdemaPulmonary EmbolismRNAReactionReperfusion InjuryReperfusion TherapyRespiratory FailureRoleSTAT3 geneTestingTransgenic MiceTransgenic Organismscell typeclinically significantdesigneffective interventioneffective therapyheme oxygenase-1in vivoinsightlung injurylung ischemiamortalitymouse modelnew therapeutic targetnoveloverexpressionoxidant stressprotective effectresponsetool
项目摘要
DESCRIPTION (provided by applicant): Ischemia-reperfusion (I-R) in organs or anoxia-reoxygenation (A-R) in cells leads to cell death, oxidant stress, and organ dysfunction. Lung I-R is likely the inciting event leading to acute lung injury during lung transplantation/surgery, thromboembolectomy, pulmonary embolism, and re-expansion pulmonary edema, all of which lead to clinically significant respiratory failure but for which no specific therapies exist. Therefore, identifying protective mechanisms will be critical to the development of effective interventions. Heme oxygenase-1 (HO-1) is an important protective molecule but the underlying molecular mechanisms and responsible cell type(s) are poorly understood. HO-1 is the highly inducible isoform of heme oxygenase, the rate-limiting enzyme in heme degradation. Using lung-targeted HO-1 siRNA, we confirmed that endogenous HO-1 induction has important protective effects in lung endothelial cells and in vivo. Recently, we have found that endothelial STAT3 is critical to the protective effects of HO-1 during lethal oxidant injury and that an antioxidant molecule, heat shock protein, Hsp70, is modulated by STAT3. We have also generated endothelial-targeted HO-1 transgenic mice and HO-1 floxed mice, which will serve as valuable tools to explore the specific role of endothelial HO-1 in vivo. These observations have led us to propose the overall hypothesis that endothelial cell HO-1 mediates protection via endothelial STAT3-Hsp70-dependent anti-oxidant pathways during A-R/I-R injury. In order to test this hypothesis we will subject lung endothelial cells to A-R injury and mice to lung I-R injury in the following Specific Aims: 1) Determine the contribution of STAT3 to the anti-oxidant effects of HO-1 in lung endothelial cells and mouse lung, 2) Delineate the role of Hsp70 in mediating the protective effects of STAT3 and HO-1 in lung endothelial cells and mouse lung, and 3) Determine the specific contribution of endothelial-derived HO-1 in mediating protection in vivo. Upon completion of the studies, we will gain important insights into the role of the endothelium and the ways in which protective molecules such as HO-1 exert their effects during A-R/I-R injury and thereby identify novel therapeutic targets. PROJECT NARRATIVE. The overall goal of our project is to understand the ways in which the lung responds to and protects itself against injury. Respiratory failure after lung transplantation, the removal of life-threatening lung clots, and other major lung surgery is due to the transient cessation of blood flow followed by re-establishment of blood flow (ischemia-reperfusion) and carries a high mortality with limited options for intervention. We have identified novel mechanisms whereby a protein that we already possess, heme oxygenase-1, can protect against ischemia-reperfusion lung injury, and have also created powerful tools with which we can explore these mechanisms fully, in the hopes of applying our findings to the design of effective therapies against respiratory failure.
描述(由申请人提供):在器官或缺氧 - 抗氧化合物(A-R)中的缺血 - 重新灌注(I-R)导致细胞死亡,氧化剂应激和器官功能障碍。肺I-R可能是煽动事件,导致肺移植/手术,血栓栓塞术,肺栓塞和再膨胀肺水肿期间急性肺损伤,所有这些都会导致临床上显着的呼吸衰竭,但不存在特定的疗法。因此,识别保护机制对于开发有效的干预措施至关重要。血红素氧酶-1(HO-1)是重要的保护性分子,但是对基本的分子机制和负责任的细胞类型的理解很少。 HO-1是血红素加氧酶的高度诱导同工型,这是血红素降解中的速率限制酶。使用靶向肺的HO-1 siRNA,我们证实内源性HO-1诱导在肺内皮细胞和体内具有重要的保护作用。最近,我们发现内皮STAT3对于致命氧化剂损伤过程中HO-1的保护作用至关重要,并且由STAT3调节了抗氧化剂分子HSP70。我们还产生了靶向内皮的HO-1转基因小鼠和HO-1 floxed小鼠,这将是探索体内内皮ho-1的特定作用的宝贵工具。这些观察结果使我们提出了总体假设,即在A-R/I-R损伤期间,内皮细胞HO-1通过内皮STAT3-HSP70依赖性抗氧化途径介导保护。为了检验该假设,我们将使肺内皮细胞遭受A-R损伤和小鼠肺I-R损伤,在以下特定目的中:1)确定STAT3对HO-1对HO-1在肺内皮细胞和小鼠肺中的抗氧化作用的贡献,2)2)描绘HSP70在介导属性统计和HONUNG的作用中的作用,并确定属于统计量和Hounge lung的作用。内皮衍生的HO-1在体内介导保护中的贡献。研究完成后,我们将对内皮的作用以及保护性分子(例如HO-1)在A-R/I-R损伤期间发挥其作用并从而确定新颖的治疗靶点的作用进行重要见解。项目叙述。我们项目的总体目标是了解肺反应并保护自己免受伤害的方式。肺移植后的呼吸衰竭,消除威胁生命的肺癌以及其他主要肺手术是由于血液流动的短暂停止,然后重新建立血液流动(缺血 - 再生灌注),并具有高死亡率,以有限的干预选择。我们已经确定了新的机制,即我们已经拥有的蛋白质(血红素加氧酶-1)可以预防缺血 - 再灌注肺损伤,并且还创建了强大的工具,我们可以充分探索这些机制,以期将我们的发现应用于有效疗法,以防止呼吸衰竭。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATTY J LEE其他文献
PATTY J LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PATTY J LEE', 18)}}的其他基金
Duke Program of Training in Pulmonary ReSearch to Promote, Engage and Retain Academic Researchers (PROSPER)
杜克大学肺部研究培训计划,以促进、吸引和留住学术研究人员 (PROSPER)
- 批准号:
10332249 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
The Duke Senescent Cell Evaluations in Normal Tissues (SCENT) Mapping Center
杜克大学正常组织衰老细胞评估 (SCENT) 绘图中心
- 批准号:
10376564 - 财政年份:2021
- 资助金额:
$ 41.38万 - 项目类别:
ShEEP Request for KEYENCE BZ-X800 All-in-One Fluorescence Microscope
SheEEP 请求购买 KEYENCE BZ-X800 一体式荧光显微镜
- 批准号:
10177103 - 财政年份:2020
- 资助金额:
$ 41.38万 - 项目类别:
TLR4-MEDIATED EPIGENETIC AND SENESCENCE MECHANISMS IN EMPHYSEMA
TLR4 介导的肺气肿表观遗传和衰老机制
- 批准号:
10013285 - 财政年份:2017
- 资助金额:
$ 41.38万 - 项目类别:
相似国自然基金
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
胶质母细胞瘤相关成纤维细胞的鉴定及其通过增加基质刚度促进肿瘤微环境缺氧的机制研究
- 批准号:82303362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氧敏感MRI分子成像评价HIF1α-VEGF信号通路诱导糖尿病心肌缺氧损伤及微循环障碍的机制研究
- 批准号:82371925
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
皮层类脑器官移植重建未成熟脑缺氧缺血性损伤神经功能环路的研究
- 批准号:82301946
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Pinpointing Earth-System Thresholds for Anoxia with new Reconstructions of the Cretaceous Hothouse
通过白垩纪温室的新重建来确定地球系统缺氧的阈值
- 批准号:
EP/X025918/1 - 财政年份:2023
- 资助金额:
$ 41.38万 - 项目类别:
Research Grant
Characterization of the energy budget of western painted turtle hepatocytes during anoxia
缺氧期间西方锦龟肝细胞能量收支的表征
- 批准号:
547362-2020 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Dependence of cyanobacteria bloom formation and maintenance on anoxia and trace metals in eutrophic lakes
富营养化湖泊中蓝藻水华的形成和维持对缺氧和微量金属的依赖性
- 批准号:
RGPIN-2019-06333 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
Discovery Grants Program - Individual
Geological Characteristics of Global Anoxic Events: Ichnological and Sedimentological Analysis of the Mid-Cretaceous Oceanic Anoxia Events in the Vocontian Basin, Southeast France
全球缺氧事件的地质特征:法国东南部沃康蒂安盆地中白垩世大洋缺氧事件的地质学和沉积学分析
- 批准号:
568733-2022 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Natural Mechanisms of Anoxia Tolerance in Brain and Liver of the Painted Turtle and Goldfish
锦龟和金鱼大脑和肝脏耐缺氧的自然机制
- 批准号:
RGPIN-2020-05116 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
Discovery Grants Program - Individual