Interplay between the heat shock response and histidine kinase pathways in the thermally dimorphic fungal pathogen Histoplasma capsulatum
热二态性真菌病原体荚膜组织胞浆菌中热休克反应与组氨酸激酶途径之间的相互作用
基本信息
- 批准号:9763433
- 负责人:
- 金额:$ 48.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-14 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAspergillus fumigatusBindingBiologyBlastomycesBody TemperatureBody Temperature ChangesCandida albicansCellsCellular MorphologyChemicalsClientCoccidioidesDNA BindingDNA Binding DomainDNA-Binding ProteinsDataDevelopmentDiseaseFilamentGeldanamycinGene ExpressionGenesGenetic EpistasisGenetic TranscriptionGoalsGrowthHSF1HSP 90 inhibitionHealthHeat shock factorHeat shock proteinsHeat-Shock ResponseHistoplasmaHistoplasma capsulatumHumanHuman bodyImmunocompetentImmunocompromised HostImmunoprecipitationInfectionInfectious AgentInhalationLaboratoriesLifeLinkMAP Kinase GeneMapsMass Spectrum AnalysisModelingMoldsMolecularMonitorMorbidity - disease rateMorphologyMycosesOrganismOsmolar ConcentrationParacoccidioidesPathogenicityPathway interactionsPhasePhenotypePlayPrevalenceProtein FamilyProteinsPublishingRegulationReproduction sporesResearchRespiratory Tract InfectionsRoleSaccharomyces cerevisiaeSaccharomycetalesSensorySignal TransductionSoilSourceTemperatureTemperature SenseTherapeuticTranscriptVirulenceVirulence FactorsWorkYeastsbaseexperimental studyfungusinhibitor/antagonistknock-downmacrophagemortalitymutantpathogenpathogenic funguspredicting responsepreventprogramsprotein protein interactionprotein-histidine kinaseresponsesensor histidine kinasetraittranscription factortranscriptome sequencingtranscriptomics
项目摘要
Project Summary
Histoplasma capsulatum is one of several systemic dimorphic fungal pathogens that switch their growth
program from an infectious mold form in the soil to a pathogenic yeast form in mammalian hosts. H. capsulatum
causes up to 25,000 life-threatening infections per year in the U.S. alone with up to 50% mortality rate, and is
the most common cause of fungal respiratory infections in healthy hosts. Infection occurs when the soil is
disrupted, facilitating dispersion of hyphal fragments or spores that are inhaled by humans. Spores and hyphal
fragments are the primary infectious agents; however, once introduced into the host, the pathogen converts to a
budding-yeast form, which survives and replicates within host macrophages. In the laboratory, the switch between
the infectious and parasitic states is modeled by changing the growth temperature: cells grow in the filamentous
form (hyphal) at room temperature, whereas growth at 37ºC is sufficient to trigger growth in the yeast form and
expression of virulence factors.
Despite its importance to human health, very little is known about how H. capsulatum senses and responds
to human body temperature. Our prior research findings significantly contributed to the understanding of the
molecular mechanism used by H. capsulatum to regulate cell morphology and virulence gene expression: we found
that four transcriptional regulators, Ryp1,2,3,4, are the core components of a temperature-responsive intersecting
regulatory network. In unpublished studies, we comprehensively identified Ryp-interacting proteins with potential
regulatory roles. Among the diverse set of Ryp2-interacting proteins, we characterized a heat shock protein,
Hsp90, and two proteins, Ssk1 and Skn7, with predicted response regulator domains. We found that Hsp90,
Ssk1 and Skn7 regulate yeast phase growth in H. capsulatum. Hsp90 plays a key role in the heat shock
response; and response regulators work with sensor histidine kinases and are often involved in sensing
environmental signals. In this project, we propose to build upon our previous findings and fully characterize the
involvement of the heat shock response and histidine kinase pathways in regulating Ryp proteins, cell
morphology and virulence traits in H. capsulatum in response to host temperature. These studies will provide
fundamental information on how cells sense temperature and turn on the appropriate virulence pathways in the host.
Ultimately, the information obtained from this project can be used to develop therapeutics for H. capsulatum
infections and help prevent other dimorphic fungal infections.
项目概要
荚膜组织胞浆菌是几种改变其生长的系统性二态性真菌病原体之一
程序从土壤中的传染性霉菌形式转变为哺乳动物宿主中的致病性酵母形式。
仅在美国每年就会造成多达 25,000 例危及生命的感染,死亡率高达 50%,
健康宿主发生真菌呼吸道感染的最常见原因是土壤受到感染。
破坏,促进人类吸入的菌丝碎片或孢子的分散。
碎片是主要的传染源;然而,一旦引入宿主,病原体就会转化为病毒。
芽殖酵母形式,在实验室的宿主巨噬细胞内存活和复制。
通过改变生长温度来模拟感染和寄生状态:细胞在丝状体中生长
在室温下形成(菌丝),而在 37°C 下生长足以引发酵母形式的生长,并且
毒力因子的表达。
尽管它对人类健康很重要,但我们对荚膜梭菌如何感知和响应知之甚少
我们之前的研究结果有助于理解人体温度。
荚膜梭菌调节细胞形态和毒力基因表达的分子机制:我们发现
四个转录调节因子 Ryp1、2、3、4 是温度响应型交叉蛋白的核心成分
在未发表的研究中,我们全面鉴定了具有潜力的 Ryp 相互作用蛋白。
在多种 Ryp2 相互作用蛋白中,我们鉴定了一种热休克蛋白,
Hsp90,以及两种蛋白质,Ssk1 和 Skn7,具有预测的反应调节域。
Ssk1 和 Skn7 调节 H. capsulatum 中的酵母阶段生长,在热休克中发挥关键作用。
响应;和响应调节器与传感器组氨酸激酶一起工作,并且通常参与传感
在这个项目中,我们建议以我们之前的发现为基础,并充分描述环境信号的特征。
热休克反应和组氨酸激酶途径参与调节 Ryp 蛋白、细胞
这些研究将提供荚膜梭菌对宿主温度的响应的形态和毒力特征。
有关细胞如何感知温度并在宿主中开启适当毒力途径的基本信息。
最终,从该项目获得的信息可用于开发荚膜梭菌的治疗方法
感染并有助于预防其他二形性真菌感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sinem Beyhan其他文献
Sinem Beyhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sinem Beyhan', 18)}}的其他基金
Fungal Virulence: Identifying the factors that control virulence and the growth in parasitic form of Coccidioides
真菌毒力:确定控制球孢子菌毒力和寄生形式生长的因素
- 批准号:
10554388 - 财政年份:2022
- 资助金额:
$ 48.75万 - 项目类别:
Fungal Virulence: Identifying the factors that control virulence and the growth in parasitic form of Coccidioides
真菌毒力:确定控制球孢子菌毒力和寄生形式生长的因素
- 批准号:
10356731 - 财政年份:2022
- 资助金额:
$ 48.75万 - 项目类别:
Interplay between the heat shock response and histidine kinase pathways in the thermally dimorphic fungal pathogen Histoplasma capsulatum
热二态性真菌病原体荚膜组织胞浆菌中热休克反应与组氨酸激酶途径之间的相互作用
- 批准号:
10675425 - 财政年份:2018
- 资助金额:
$ 48.75万 - 项目类别:
Interplay between the heat shock response and histidine kinase pathways in the thermally dimorphic fungal pathogen Histoplasma capsulatum
热二态性真菌病原体荚膜组织胞浆菌中热休克反应与组氨酸激酶途径之间的相互作用
- 批准号:
9975692 - 财政年份:2018
- 资助金额:
$ 48.75万 - 项目类别:
Regulatory Circuits that Link Cell Fate and Virulence in Histoplasma Capsulatum
荚膜组织胞浆菌中连接细胞命运和毒力的调节电路
- 批准号:
9235218 - 财政年份:2014
- 资助金额:
$ 48.75万 - 项目类别:
Regulatory circuits that link cell fate and virulence in Histoplasma capsulatum
荚膜组织胞浆菌中连接细胞命运和毒力的调节回路
- 批准号:
8751163 - 财政年份:2014
- 资助金额:
$ 48.75万 - 项目类别:
相似国自然基金
SIRT1通过TXNIP/NLRP3通路促进巨噬细胞自噬在烟曲霉感染中的作用及机制研究
- 批准号:82360624
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
毒素胁迫诱变构建烟曲霉毒素降解酶突变体库及构效关系和降解机理研究
- 批准号:32372923
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
烟曲霉细胞壁糖蛋白的分泌与定位机制研究
- 批准号:32371337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
烟曲霉tRNA第34位摆动碱基修饰调控其侵染宿主和毒力的分子机制研究
- 批准号:32370078
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于KdpD介导K+运送系统研究烟曲霉酸抗多重耐药嗜麦芽寡养单胞菌的构效关系及作用机制
- 批准号:82360693
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Improving granulocyte transfusion in neutropenia-related infections
改善中性粒细胞减少相关感染的粒细胞输注
- 批准号:
10682602 - 财政年份:2022
- 资助金额:
$ 48.75万 - 项目类别:
Improving granulocyte transfusion in neutropenia-related infections
改善中性粒细胞减少相关感染的粒细胞输注
- 批准号:
10682602 - 财政年份:2022
- 资助金额:
$ 48.75万 - 项目类别:
Analysis of transcription factors determining azole resistance of Aspergillus fumigatus
烟曲霉唑类抗性转录因子分析
- 批准号:
10664888 - 财政年份:2019
- 资助金额:
$ 48.75万 - 项目类别:
Innate Immune Response to Aspergillus fumigatus Cell Wall Carbohydrates
对烟曲霉细胞壁碳水化合物的先天免疫反应
- 批准号:
10212945 - 财政年份:2019
- 资助金额:
$ 48.75万 - 项目类别:
Innate Immune Response to Aspergillus fumigatus Cell Wall Carbohydrates
对烟曲霉细胞壁碳水化合物的先天免疫反应
- 批准号:
10450028 - 财政年份:2019
- 资助金额:
$ 48.75万 - 项目类别: