Impact of network oscillations on dendritic computation in hippocampal pyramidal neurons
网络振荡对海马锥体神经元树突计算的影响
基本信息
- 批准号:9761836
- 负责人:
- 金额:$ 4.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAlzheimer&aposs DiseaseAnatomyAnimalsApicalAreaAttentionBehaviorBehavioralCalciumCell physiologyCellsChemosensitizationChronicComputer softwareConceptionsCoupledCouplingDataDendritesDevelopmentDistalElectrophysiology (science)EnvironmentEpilepsyEventGenerationsGoalsGrantHeadHippocampal FormationHippocampus (Brain)ImageImpairmentIndividualKnowledgeLabelLearningLinkLocationMaintenanceMemoryMethodsMonitorMusNeuronsOrganismOutputPathologyPhysiologicalPlayPopulationPrevalenceProcessPropertyPyramidal CellsResearchResolutionRewardsRodentRoleSensoryShapesSignal TransductionSiteSynapsesSynaptic plasticityTestingTrainingUpdateWorkawakeextracellularhippocampal pyramidal neuronhippocampal subregionsin vivolearned behaviormemory consolidationnervous system disordernoveloptical imagingrecruitregenerativespatial memorysubmicrontwo-photonway finding
项目摘要
Project Summary/Abstract
Perhaps the fundamental property of a neuron is its ability to integrate and transform diverse inputs into a
singular train of action potential output. This capacity is what enables circuits of neurons to combine
environmental features and internal states to drive an organism’s behavior. Dendrites, the primary sites of
synaptic input integration, are capable of generating local regenerative events known as dendritic spikes.
Recent in vivo work points to the importance of dendritic spiking to behavior and has demonstrated a role for
these events in synaptic plasticity, feature selectivity, and learning in cortical and non-cortical areas. In
particular, there has been significant recent progress connecting the dynamics of dendritic spiking in CA1
pyramidal cells (CA1 PCs) during active exploration to the formation and maintenance of CA1 PC spatial
tuning. It has therefore become clear that an understanding of in vivo dendritic dynamics in CA1 PCs is critical
for elucidating the computational roles of CA1 PCs in hippocampal spatial memory function.
In parallel, the role of CA1 network activity in spatial memory function during immobility is also recently
being actively explored. Sharp-wave ripples (SWRs), the predominant network event during awake immobility,
are thought to enable synaptic potentiation in CA1 PCs previously co-active during exploration. Through this
mechanism, SWRs have been implicated in memory consolidation and spatial learning. A major knowledge
gap remains concerning how these population-level network states alter dendritic dynamics in CA1 PCs.
The goal of the proposed research is to connect CA1 network dynamics to the dendritic dynamics
determining cellular participation in spatial navigation and memory tasks. This proposal implements several
recent advances in optical imaging and extracellular electrophysiology methods in the mouse, allowing us to
longitudinally monitor the activity of the dendrites and cell bodies of hippocampal neurons with submicron
resolution while simultaneously recording network oscillations over many days as the animal engages in
various navigation and learning behaviors. Using these methods, I will address the central hypothesis of this
application, that SWRs persistently alter the mode of dendritic integration of recruited CA1 PCs and that these
mode changes will in turn determine the cell’s spatial memory function. Aim 1 will test whether the activity of
dendrites active during SWRs are stabilized, and if this has an impact on the day to day stability of CA1 PC
spatial tuning. Aim 2 will examine how dendritic activity during SWRs shapes the way CA1 PC spatial tuning is
altered by rewards in a spatial learning task. In summary, this work will use chronic extracellular
electrophysiology and simultaneous multiplane two-photon imaging of CA1 PC dendritic and somatic activity
during learning in the awake rodent to further our understanding of the interplay of network and dendritic
dynamics on hippocampal spatial memory function.
项目概要/摘要
也许神经元的基本属性是它能够将不同的输入整合并转化为
这种能力使得神经元电路能够组合起来。
驱动生物体行为的环境特征和内部状态。树突是生物体的主要场所。
突触输入整合能够产生称为树突尖峰的局部再生事件。
最近的体内工作指出了树突尖峰对行为的重要性,并证明了其作用
这些事件涉及突触可塑性、特征选择性以及皮质和非皮质区域的学习。
特别是,最近在 CA1 树突尖峰动力学方面取得了重大进展
锥体细胞(CA1 PC)在积极探索CA1 PC空间的形成和维持过程中
因此,很明显,了解 CA1 PC 的体内树突动力学至关重要。
阐明 CA1 PC 在海马空间记忆功能中的计算作用。
与此同时,CA1 网络活动在不动期间空间记忆功能中的作用最近也得到了研究。
锐波波纹(SWR)是清醒不动期间的主要网络事件,
被认为可以在探索过程中先前共同活跃的 CA1 PC 中实现突触增强。
SWR 与记忆巩固和空间学习有关。
关于这些群体水平的网络状态如何改变 CA1 PC 中的树突动态仍然存在差距。
本研究的目标是将 CA1 网络动力学与树突动力学联系起来
确定细胞参与空间导航和记忆任务该提案实施了几个。
小鼠光学成像和细胞外电生理学方法的最新进展使我们能够
用亚微米纵向监测海马神经元树突和细胞体的活动
分辨率,同时记录动物参与多天的网络振荡
使用这些方法,我将解决这个的中心假设。
应用程序中,SWR 持续改变招募的 CA1 PC 的树突整合模式,并且这些
模式的变化将反过来决定细胞的空间记忆功能是否活跃。
SWR 期间活跃的树突已稳定,这是否对 CA1 PC 的日常稳定性有影响
目标 2 将研究 SWR 期间的树突活动如何影响 CA1 PC 空间调谐的方式。
空间学习任务中的奖励会改变总之,这项工作将使用慢性细胞外。
CA1 PC 树突和体细胞活动的电生理学和同时多平面双光子成像
在清醒啮齿动物的学习过程中,进一步了解网络和树突的相互作用
海马空间记忆功能的动态变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian Victor Rolotti其他文献
Sebastian Victor Rolotti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Effects of Aging and Microglia Dysfunction on Remyelination
衰老和小胶质细胞功能障碍对髓鞘再生的影响
- 批准号:
10603320 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Alpha-Synuclein aberrantly modifies the nanoscale distribution and function of ion channels to promote neuronal cytotoxicity
α-突触核蛋白异常地改变离子通道的纳米级分布和功能以促进神经元细胞毒性
- 批准号:
10635208 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Mechanism and restoration of altered firing in interneurons during early phase Alzheimer's Disease
阿尔茨海默病早期中间神经元放电改变的机制和恢复
- 批准号:
10537621 - 财政年份:2022
- 资助金额:
$ 4.5万 - 项目类别:
Elucidating mechanisms of active dendritic integration in vivo
阐明体内主动树突整合的机制
- 批准号:
10504968 - 财政年份:2022
- 资助金额:
$ 4.5万 - 项目类别: