Development and Validation of Prognostic Radiomic Markers of Response and Recurrence for Patients with Colorectal Liver Metastases
结直肠肝转移患者反应和复发的预后放射学标志物的开发和验证
基本信息
- 批准号:9761718
- 负责人:
- 金额:$ 74.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsBiological MarkersBiometryCancer CenterCancer EtiologyCessation of lifeClinicalClinical TrialsCollaborationsColorectalColorectal CancerComputer softwareDataData SetDecision MakingDevelopmentDiagnosticDiseaseDisease ProgressionEnsureExcisionEyeGoalsHepaticHumanImageImage AnalysisInfusion proceduresInstitutesInstitutionLinkMalignant NeoplasmsMalignant neoplasm of liverManufacturer NameMedical OncologyMedical centerMetastatic Neoplasm to the LiverMethodsModelingNetwork-basedOperative Surgical ProceduresOutcomePathologyPathway interactionsPatient SelectionPatientsPatternPerformancePhasePhase I/II TrialPrognostic MarkerProspective StudiesPublicationsRadiology SpecialtyRecurrenceRegional ChemotherapyReproducibilityResearchResolutionScanningSeriesSpecificityStandardizationSystemTechnologyTestingTherapeuticTrainingUnited StatesUniversity of Texas M D Anderson Cancer CenterUpdateValidationVenousWestern WorldX-Ray Computed Tomographybasecancer carecancer diagnosiscancer imagingchemotherapyclinical carecolon cancer patientscomparativecontrast enhancedconvolutional neural networkcostdesignefficacy trialexperiencehigh riskimage archival systemimaging biomarkerimaging modalityimprovedindexingindividualized medicineinnovationmortalitynovelnovel markerpersonalized cancer therapypersonalized medicinephantom modelprecision medicinepredicting responseprediction algorithmpreventprognosticprogramsprospectivequantitative imagingradiomicsreconstructionresponseresponse biomarkerspecific biomarkerstool
项目摘要
SUMMARY
Colorectal cancer is the second leading cause of cancer-related mortality in the United States. More than 50%
of patients with colorectal cancer will develop liver metastases in their lifetime with a dismal <10% surviving
past three years. A major therapeutic problem in this disease is that no markers prognostic of hepatic
recurrence or predictive of response prior to treatment are known. The goal of this research is to fill this gap by
providing non-invasive and objective prognostic quantitative imaging markers for personalized treatment of
colorectal liver metastases (CRLM). Our single-institution data support that quantitative imaging features
extracted from routine CT scans predict volumetric response to systemic and regional chemotherapy and
identify patients at high risk of hepatic recurrence and poor survival. Progress in developing these novel
markers is limited by a lack of optimization, standardization, and validation, all critical barriers to clinical use.
The objectives of this application are to develop and validate robust imaging features by standardizing image
acquisition, to improve automated tools for clinical trial use, and to validate the predictive power of imaging
features with external data. We have partnered with University of Texas MD Anderson Cancer Center,
Rensselaer Polytechnic Institute, and GE Research, facilitating the widespread integration of the proposed
technology into medical centers worldwide. Our central hypothesis is that quantitative CT-based imaging
features provide novel and robust indices for predicting response, hepatic recurrence, and survival in CRLM
patients. Specifically, we will (1) validate predictive and prognostic imaging features with external data, (2)
prospectively assess repeatability and reproducibility of contrast-enhanced CT imaging features, and (3)
develop an integrated rawdiomics pipeline by fully utilizing sinogram data. We have assembled a critical mass
of experts in surgery, medical oncology, pathology, radiology, biostatistics, and image analysis. Combined with
the largest clinical experience in CRLM in the western world, this application is a unique and unrivaled
opportunity to define radiomics of CRLM. Integration into existing clinical workflows means that small medical
centers without highly specialized radiology groups would benefit from predictive algorithms developed at two
high-volume centers via a low-cost software update. Successful completion of our aims will provide validated
prognostic imaging markers with a pathway to routine clinical use, which are of paramount importance to
improving patient survival of this deadly disease.
概括
结直肠癌是美国癌症相关死亡的第二大原因。超过50%
的结直肠癌患者在其一生中会发生肝转移,存活率低至<10%
过去三年。该疾病的一个主要治疗问题是没有肝病预后标志物
治疗前复发或反应的预测是已知的。本研究的目标是通过以下方式填补这一空白
为个体化治疗提供非侵入性、客观的预后定量成像标志物
结直肠肝转移(CRLM)。我们的单一机构数据支持定量成像特征
从常规 CT 扫描中提取的数据可预测对全身和区域化疗的体积反应,
识别肝复发高风险和生存率低的患者。这些小说的开发进展
标记物因缺乏优化、标准化和验证而受到限制,这些都是临床使用的关键障碍。
该应用程序的目标是通过标准化图像来开发和验证强大的成像功能
采集,改进临床试验使用的自动化工具,并验证成像的预测能力
具有外部数据的功能。我们与德克萨斯大学 MD 安德森癌症中心合作,
伦斯勒理工学院和 GE 研究中心,促进拟议的广泛整合
技术进入全球医疗中心。我们的中心假设是基于 CT 的定量成像
这些特征为预测 CRLM 的反应、肝复发和生存提供了新颖且可靠的指标
患者。具体来说,我们将 (1) 使用外部数据验证预测和预后成像特征,(2)
前瞻性评估对比增强 CT 成像特征的可重复性和再现性,以及 (3)
通过充分利用正弦图数据开发集成的原始组学管道。我们已经聚集了足够多的人
由外科、肿瘤内科、病理学、放射学、生物统计学和图像分析方面的专家组成。结合
西方世界最大规模的 CRLM 临床经验,该应用是独一无二的、无与伦比的
定义 CRLM 放射组学的机会。集成到现有的临床工作流程意味着小型医疗
没有高度专业化放射学小组的中心将受益于两个项目开发的预测算法
通过低成本的软件更新来实现高容量中心。成功完成我们的目标将提供经过验证的
具有常规临床使用途径的预后影像标记物,这对于
提高这种致命疾病患者的生存率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun Shin Chun其他文献
Germline E‐cadherin gene mutations
种系E-钙粘蛋白基因突变
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:6.2
- 作者:
Yun Shin Chun;N. Lindor;T. Smyrk;B. Petersen;L. Burgart;P. Guilford;J. Donohue - 通讯作者:
J. Donohue
Reproducibility and efficiency of liver volumetry using manual method and liver analysis software.
使用手动方法和肝脏分析软件进行肝脏容量测定的重现性和效率。
- DOI:
10.1016/j.hpb.2024.03.1157 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:0
- 作者:
H. Maki;Yujiro Nishioka;Antony Haddad;M. Lendoire;H. T. Tran Cao;Yun Shin Chun;Ching;J. Vauthey;T. Newhook - 通讯作者:
T. Newhook
Epidemiology and Risk Factors
流行病学和危险因素
- DOI:
10.1007/978-3-030-22258-1_1 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
R. Katkhuda;Yun Shin Chun - 通讯作者:
Yun Shin Chun
Yun Shin Chun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun Shin Chun', 18)}}的其他基金
Development and Validation of Prognostic Radiomic Markers of Response and Recurrence for Patients with Colorectal Liver Metastases
结直肠肝转移患者反应和复发的预后放射学标志物的开发和验证
- 批准号:
10240449 - 财政年份:2019
- 资助金额:
$ 74.41万 - 项目类别:
Development and Validation of Prognostic Radiomic Markers of Response and Recurrence for Patients with Colorectal Liver Metastases
结直肠肝转移患者反应和复发的预后放射学标志物的开发和验证
- 批准号:
10472602 - 财政年份:2019
- 资助金额:
$ 74.41万 - 项目类别:
Development and Validation of Prognostic Radiomic Markers of Response and Recurrence for Patients with Colorectal Liver Metastases
结直肠肝转移患者反应和复发的预后放射学标志物的开发和验证
- 批准号:
10684268 - 财政年份:2019
- 资助金额:
$ 74.41万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 74.41万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 74.41万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 74.41万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 74.41万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 74.41万 - 项目类别: