iTransform: Wearable Biosensors to Detect the Evolution of Opioid Tolerance in Opioid Naïve Individuals
iTransform:可穿戴生物传感器检测阿片类药物耐受性的演变
基本信息
- 批准号:9889092
- 负责人:
- 金额:$ 18.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAgeAlgorithmsAnalgesicsAreaBehavior TherapyBehavioralBig DataBiological MarkersBiometryBiosensing TechniquesBiosensorCharacteristicsConsentDataData AnalysesData AnalyticsData CollectionData ScienceData SetDevelopmentDevicesDoctor of PhilosophyDoseDrug abuseEnsureEvaluationEventEvolutionFractureFundingGalvanic Skin ResponseGenderGeneticGoalsHeroin AbuseImmersionIndividualIngestionInterventionInvestigationItalyK-Series Research Career ProgramsKnowledgeMachine LearningMeasurementMeasuresMedicalMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMethodsMonitorMorbidity - disease rateMotionOpiate AddictionOpioidOpioid AnalgesicsOverdosePainParticipantPatientsPatternPattern RecognitionPharmaceutical PreparationsPhysiologicalPhysiologyPilot ProjectsPopulationPredictive AnalyticsProductivityProtocols documentationPublic HealthRecordsRelapseReportingResearchResearch PersonnelResearch Project GrantsResearch TrainingRiskRisk FactorsSafetyScienceScientistSignal TransductionSkin TemperatureSourceSubstance Use DisorderSubstance abuse problemTeacher Professional DevelopmentTechniquesTechnologyTestingTherapeuticTherapeutic EffectTherapeutic UsesTimeTrainingUnited States National Institutes of HealthWorkWristaddictionanalytical methodbasebehavioral healthcareercomparativedata integritydata managementdigitalexperiencehigh riskinnovationinsightlearning algorithmmHealthmachine learning algorithmmachine learning methodmortalitynovelopiate toleranceopioid abuseopioid mortalityopioid overdoseopioid therapyopioid useprediction algorithmprescription opioidpreventprogramsrecruitresponsesensorsignal processingskillssocialsuccesssupervised learningtool
项目摘要
PROJECT SUMMARY
The integrated research and training plans outlined in this K23 submission will prepare me for a career as a
clinician-scientist conducting translational substance abuse research. My career goal is to perform hypothesis-
driven original research investigations directed toward reducing morbidity and mortality from opioid overdose. In
this proposal, I intend to deploy wearable biosensors (small devices that continuously record physiology) to study
the effects of therapeutic administration of opioid analgesics. I have already studied wearable biosensors in
individuals receiving opioids; my preliminary data demonstrates that opioid-tolerant individuals have different
biometric signals than non-tolerant individuals. This observation suggests that biosensors can be used to identify
the onset of tolerance, an important event that correlates with higher doses of opioid analgesics, and higher risk
of death from opioid overdose. Biosensor data management and analysis requires signal processing, data
analytic, and machine learning techniques; these approaches are beyond the areas of traditional medical
training. My short-term goal is to utilize this K23 award to fill my knowledge gaps in wearable biosensing and
advanced data analysis so that I can generate ever more innovative responses to the problem of opioid
prescribing, tolerance, misuse, addiction, and overdose. To optimize this important line of investigation, I have
developed a training plan that includes: 1) completing a PhD through the Millennium PhD program; 2) expanding
my skills in wearable biosensing and behavioral health-based research; 3) developing an understanding of signal
processing and machine learning; 4) developing data analytic and data science skills; and 5) expanding my
research presentation and dissemination skills. I will achieve these goals through directed coursework, focused
seminars, and practical experience. My mentorship team of expert investigators who will ensure my productivity
and success includes E. Boyer (primary mentor), D. Smelson, J. Fang, and P. Indic (secondary mentors), and
D. Ganesan (advisor) My research plan has three specific aims: 1) to deploy a wearable biosensor technology
to detect digital biomarkers associated with the initiation of opioid analgesic therapy in an opioid naïve population;
2) to use signal-processing analytics to identify transitions in digital biomarkers with progressive opioid use and
to identify individual characteristics associated with this transition; and, 3) to apply and explore supervised
learning algorithms that can predict transitions in digital biomarkers that herald the onset of opioid tolerance. To
identify dynamic patterns in response to opioids, I will study the digital biomarkers of opioid-naïve patients with
acute fractures who are prescribed opioid analgesics. Results will be used to develop “big data” approaches to
apply predictive algorithms to identify the onset of opioid tolerance. This work has the potential to prevent
development of problematic opioid use and will provide the basis for subsequent R01 submissions to implement
sensor-based interventions triggered by the onset of tolerance in individuals receiving opioid analgesics.
项目概要
这份 K23 提交文件中概述的综合研究和培训计划将为我的职业生涯做好准备
进行转化药物滥用研究的临床医生科学家。我的职业目标是进行假设-
推动了旨在降低阿片类药物过量导致的发病率和死亡率的原始研究调查。
这个提案,我打算部署可穿戴生物传感器(连续记录生理学的小型设备)来研究
阿片类镇痛药的治疗效果我已经研究过可穿戴生物传感器。
接受阿片类药物的个体;我的初步数据表明,阿片类药物耐受的个体有不同的
这一观察表明生物传感器可用于识别。
耐受性的发生,这是与较高剂量的阿片类镇痛药和较高风险相关的重要事件
生物传感器数据管理和分析需要信号处理、数据。
分析和机器学习技术;这些方法超出了传统医学的领域
我的短期目标是利用这个 K23 奖项来填补我在可穿戴生物传感和技术方面的知识空白。
先进的数据分析,以便我能够针对阿片类药物问题提出更具创新性的应对措施
为了优化这一重要的研究方向,我对处方、耐受性、滥用、成瘾和过量进行了研究。
制定了一项培训计划,其中包括:1)通过千年博士项目完成博士学位;2)扩大
我在可穿戴生物传感和行为健康研究方面的技能;3)加深对信号的理解;
处理和机器学习;4)发展数据分析和数据科学技能;5)扩展我的能力;
我将通过有针对性的课程作业来实现这些目标。
我的专家指导团队将确保我的生产力。
成功者包括 E. Boyer(主要导师)、D. Smelson、J. Fang 和 P. Indic(二级导师),以及
D. Ganesan(顾问)我的研究计划有三个具体目标:1)部署可穿戴生物传感器技术
检测与在未使用阿片类药物的人群中开始阿片类药物镇痛治疗相关的数字生物标志物;
2) 使用信号处理分析来识别数字生物标志物随着阿片类药物使用的进展而发生的转变,
识别与此转变相关的个人特征;3)应用和探索监督;
可以预测预示阿片类药物耐受性开始的数字生物标记物转变的学习算法。
识别对阿片类药物反应的动态模式,我将研究未使用阿片类药物的患者的数字生物标志物
服用阿片类镇痛药的急性骨折患者的结果将用于开发“大数据”方法。
应用预测算法来识别阿片类药物耐受的发生,这项工作有可能预防阿片类药物耐受。
开发有问题的阿片类药物使用,并将为后续 R01 提交的实施提供基础
由接受阿片类镇痛药的个体出现耐受性而触发的基于传感器的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHANIE P CARREIRO其他文献
STEPHANIE P CARREIRO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHANIE P CARREIRO', 18)}}的其他基金
RAE cHealth: A digital community support tool to promote recovery from substance use disorder
RAE cHealth:促进药物滥用障碍康复的数字社区支持工具
- 批准号:
10838804 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
MINDER: Wearable sensor-based detection of digital biomarkers of adherence to medications for opioid use disorder
MINDER:基于可穿戴传感器的数字生物标记检测,用于检测阿片类药物使用障碍药物的依从性
- 批准号:
10656796 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
The ANTIDOTE Institute- Advancing New Toxicology Investigators in Drug abuse and Original Translational research Efforts
ANTIDOTE Institute - 推动新毒理学研究人员在药物滥用和原创转化研究工作中的发展
- 批准号:
10681927 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
RAE cHealth: A digital community support tool to promote recovery from substance use disorder
RAE cHealth:促进药物滥用障碍康复的数字社区支持工具
- 批准号:
10469897 - 财政年份:2022
- 资助金额:
$ 18.86万 - 项目类别:
RAE (Realize, Analyze, Engage)- A Digital Biomarker Based Detection and Intervention System for Stress and Craving During Recovery from Substance Abuse Disorders
RAE(实现、分析、参与)——一种基于数字生物标记的检测和干预系统,用于治疗药物滥用疾病恢复过程中的压力和渴望
- 批准号:
9545385 - 财政年份:2019
- 资助金额:
$ 18.86万 - 项目类别:
RAE (Realize, Analyze, Engage)- A Digital Biomarker Based Detection and Intervention System for Stress and Craving During Recovery from Substance Abuse Disorders
RAE(实现、分析、参与)——一种基于数字生物标记的检测和干预系统,用于治疗药物滥用疾病恢复过程中的压力和渴望
- 批准号:
10356481 - 财政年份:2019
- 资助金额:
$ 18.86万 - 项目类别:
RAE (Realize, Analyze, Engage)- A Digital Biomarker Based Detection and Intervention System for Stress and Craving During Recovery from Substance Abuse Disorders
RAE(实现、分析、参与)——一种基于数字生物标记的检测和干预系统,用于治疗药物滥用疾病恢复过程中的压力和渴望
- 批准号:
10370419 - 财政年份:2019
- 资助金额:
$ 18.86万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Treating Drivers of Suicide in Primary Care using Jaspr Health TABA Supplement
使用 Jaspr Health TABA 补充剂治疗初级保健中的自杀驱动者
- 批准号:
10805635 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Social Media Use, Sleep, and Suicidality in Adolescents
青少年的社交媒体使用、睡眠和自杀倾向
- 批准号:
10815282 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
COVID-19 Pandemic-related Changes in the Child Tax Credit and Effects on Behavioral Health for Medicaid-enrolled Adolescents
与 COVID-19 大流行相关的儿童税收抵免变化及其对参加医疗补助的青少年行为健康的影响
- 批准号:
10686628 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Access to medical care and health care utilization among low-income immigrants
低收入移民获得医疗保健的机会和医疗保健利用
- 批准号:
10789176 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Effects of Family Caregiver Availability and Capacity on Home Health Care for Older Adults with Alzheimer's Disease and Related Dementias
家庭护理人员的可用性和能力对患有阿尔茨海默病和相关痴呆症的老年人的家庭保健的影响
- 批准号:
10571079 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别: