Enabling remote medical physics services for medical accelerator quality assurance through a novel, table-top imaging device

通过新颖的桌面成像设备实现远程医学物理服务,以保证医疗加速器的质量

基本信息

  • 批准号:
    10773360
  • 负责人:
  • 金额:
    $ 5.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Executive Summary Radiation Therapy is an effective component of the treatment strategy for patients suffering from cancer. Advanced techniques such as intensity modulated radiation therapy (IMRT), image-guided RT (IGRT), stereotactic body RT (SBRT) and stereotactic radiosurgery (SRS) improve outcomes and are delivered using medical linear accelerators (i.e., ‘linacs”). SBRT is especially appealing given that the precise treatments are delivered in 1-5 daily treatment fractions, as opposed to the 20-40 fractions required for conventional techniques. Providing SBRT in rural settings can improve access by administering these precise, abbreviated treatments to patients who have difficulty traveling to large, regional medical centers. Further, adoption of automated techniques for quality control and enhanced tele-dosimetry can support peer review, improve quality, reduce dependence on (local) expertise and reduce operating costs. The quality assurance (QA) that medical physicists provide is critical for safe treatments, yet there is a shortage of qualified medical physicists (QMPs), both in the US and globally. At the same time, more centers are introducing modern techniques that are more precise but intrinsically have more risk, due the high doses and geometric precision required. There is widespread noncompliance with industry standard QA protocols in the US and internationally. Existing QA devices have not evolved sufficiently to provide the precision, versatility and efficiency that is needed for high precision RT. Given these exacerbated safety risks, the market needs a paradigm shift in how QA is performed in modern RT. Wild Dog Physics (WDP) proposes to design and test a new-generation QA device that addresses these unmet medical needs. When complete, it will be more precise, efficient, and comprehensive than any QA solution currently on the market. The proposed project seeks to develop a clinical prototype to be tested in the Radiation Therapy clinic at the University of Kentucky, as well as regional partner organizations located in rural, underserved areas. The prototype will be developed using the following milestones: Design and build i) a novel, a small-form-factor optical tunnel (SFFOT), ii) a laminated side wall with a scintillating phosphor screen and ‘switchable film’ outer layer to facilitate ambient light rejection and iii), a hybrid beam quality / compact CT phantom. The project will culminate with the construction of an integrated prototype that will be tested for technical and clinical performance. Towards this end, the specific aims of this project are: Specific Aim 1: Build and test the 3 primary subcomponents of an integrated device; a) a SFFOT that can collect an image(s) of the entire useful interior surface, transmit the image(s) to an electronic camera sensor through a small form-factor (< 5 cm diameter) passive optical chain; b) a laminated side wall consisting of an outer, electronically polarizing optical layer, and an inner radio-luminescent layer, and c) a hybrid ‘dose phantom’ to be integrated onto one side of the device which will serve as a tissue-equivalent phantom so that beam quality metrics can be monitored and to host CT image quality test objects. Specific Aim 2: Construct and test a clinical prototype; The system’s ability to monitor machine performance in a clinical setting will be validated. Sensitivity to detecting changes in relative and absolute radiation output, as well as field edge positioning will be measured, with success criteria defined as 0.5% and 0.5 mm. Data acquisition time for monthly QA tests will be measured and success defined as less than 30 minutes. The consolidation of multiple device functions combined with the ease of use and measurement precision enable a paradigm shift in how medical physics services and quality assurance are rendered. Sparse but efficient daily QA protocols will be replaced with comprehensive data collection and automated analysis, at no additional cost in time or staffing. High precision radiation treatments can be safely brought to rural and underserved areas, with safety, efficiency and precision improved in any center using the innovation. To date, we have established the feasibility of constructing a single device that can acquire comprehensive QA metrics in less than 60 minutes. Presently, all subsystems have been tested and found to perform as required. A three-dimensional prototype has been built and is being validated by our clinical partner at the UK Radiation Medicine department. WDP is in the process of seeking SBIR Phase 2 funding to further develop the technology to the point of commercialization.
执行摘要 放射治疗是治疗策略的有效组成部分 癌症。高级技术,例如强度调制辐射疗法(IMRT),图像引导RT(IGRT), 立体定向身体RT(SBRT)和立体定向放射外科手术(SRS)改善了预后,并使用 医疗线性加速器(即“ Linacs”)。鉴于精确治疗是 与常规所需的20-40个分数相比,以1-5的每日治疗分数交付 技术。在粗糙设置中提供SBRT可以通过管理这些精确,缩写来改善访问 对困难前往大型区域医疗中心的患者进行治疗。此外,采用 用于质量控制和增强的远程测量法的自动化技术可以支持同行评审,改进 质量,减少对(本地)专业知识的依赖并降低运营成本。 医学物理学家提供的质量保证(QA)对于安全治疗至关重要,但是有一个 在美国和全球,合格的医学物理学家(QMP)短缺。同时,更多的中心 正在引入更精确但本质上具有更多风险的现代技术,因为高剂量 和几何精度。与行业标准质量质量检查协议有广泛的违规 美国和国际。现有的质量检查设备尚未得到充分进化以提供精度,多功能性 和高精度RT所需的效率。鉴于这些恶化的安全风险,市场需要一个 现代RT中质量检查的范式转变。 野狗物理(WDP)提案,以设计和测试一种解决这些问题的新一代质量检查设备 未满足的医疗需求。完成后,它将比任何质量检查更精确,高效和全面 目前在市场上的解决方案。拟议的项目旨在开发临床原型,以在 肯塔基大学的放射治疗诊所以及位于 粗糙,服务不足的地区。原型将使用以下里程碑开发:设计和构建I) 小说,小型的光学隧道(SFFOT),ii)带有闪烁磷光器的层压侧壁 屏幕和“可开关膜”外层,以促进环境光排斥和iii),这是混合束质量 / 紧凑型CT幻影。该项目将随着集成原型的结构而达到顶峰 测试了技术和临床性能。 为此,该项目的具体目标是: 特定目标1:构建和测试集成设备的3个主要子组件; a)可以 收集整个有用内部表面的图像,将图像传输到电子相机传感器 通过一个小的形式因子(直径<5 cm)被动光链; b)由 外部,电子偏振光层和内部无线电发光层,以及c)混合剂量 幻影’将集成到设备的一侧,该设备将用作组织等效的幻影 可以监视光束质量指标并托管CT图像质量测试对象。 特定目标2:构建和测试临床原型;该系统可以监视机器性能 临床环境将得到验证。对检测相对和绝对辐射输出变化的敏感性,因为 以及将测量场边缘定位,成功标准定义为0.5%和0.5 mm。数据 每月质量检查测试的获取时间将进行测量,并将成功定义为少于30分钟。 多个设备功能的合并结合了易用性和测量 精度使医疗物理服务和质量保证的渲染方式可以改变。疏 但是有效的每日质量请QA协议将被综合数据收集和自动分析所取代 没有额外的时间或人员成本。可以安全地将高精度的辐射治疗带到农村和 服务不足的区域,使用创新在任何中心都提高了安全,效率和精确度。 迄今为止,我们已经建立了构建可以获取的单个设备的可行性 不到60分钟的综合质量检查指标。目前,所有子系统均已测试并发现 根据需要执行。已经建立了三维原型,并通过我们的临床验证 英国辐射医学系的合伙人。 WDP正在寻求SBIR 2阶段资金 进一步开发技术到商业化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janelle Arlene Molloy其他文献

Janelle Arlene Molloy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janelle Arlene Molloy', 18)}}的其他基金

Enabling remote medical physics services for medical accelerator quality assurance through a novel, table-top imaging device
通过新颖的桌面成像设备实现远程医学物理服务,以保证医疗加速器的质量
  • 批准号:
    10256613
  • 财政年份:
    2021
  • 资助金额:
    $ 5.5万
  • 项目类别:

相似海外基金

Control of ovarian vascular remodeling by CCAAT/enhancer binding proteins alpha and beta
CCAAT/增强子结合蛋白α和β控制卵巢血管重塑
  • 批准号:
    10684822
  • 财政年份:
    2022
  • 资助金额:
    $ 5.5万
  • 项目类别:
Involvement of microglial α7AChR in binge alcohol modulation of gut dysbiosis
小胶质细胞α7AChR参与酗酒调节肠道菌群失调
  • 批准号:
    10705750
  • 财政年份:
    2022
  • 资助金额:
    $ 5.5万
  • 项目类别:
Involvement of microglial α7AChR in binge alcohol modulation of gut dysbiosis
小胶质细胞α7AChR参与酗酒调节肠道菌群失调
  • 批准号:
    10527744
  • 财政年份:
    2022
  • 资助金额:
    $ 5.5万
  • 项目类别:
Visible-light OCT angiography, velocimetry, and oximetry for characterizing retinal vascular alterations in glaucoma
可见光 OCT 血管造影、测速和血氧测定法用于表征青光眼视网膜血管改变
  • 批准号:
    10470130
  • 财政年份:
    2020
  • 资助金额:
    $ 5.5万
  • 项目类别:
Trimodal vitality imaging of neural progenitor cells in the spinal cord
脊髓神经祖细胞的三模态活力成像
  • 批准号:
    10221069
  • 财政年份:
    2020
  • 资助金额:
    $ 5.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了