Visible-light OCT angiography, velocimetry, and oximetry for characterizing retinal vascular alterations in glaucoma
可见光 OCT 血管造影、测速和血氧测定法用于表征青光眼视网膜血管改变
基本信息
- 批准号:10470130
- 负责人:
- 金额:$ 50.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAbbreviationsAcuteAddressAffectAngiographyArchitectureArteriesAttentionAxonBlindnessBlood CirculationBlood VesselsBlood capillariesBlood flowComputer softwareDefectDetectionDevelopmentDiagnosisEarly identificationEventEyeGlaucomaGlossaryGoalsHomeostasisImpairmentInjuryIntraocular pressure testLasersLateralLeadLightingMachine LearningMeasurementMeasuresMethodsModelingNoiseOptic NerveOptic Nerve InjuriesOptic Nerve TransectionsOptical Coherence TomographyOxygenOxygen saturation measurementPatientsPerformancePhysiologic Intraocular PressurePredispositionProcessProgressive DiseaseRattusResolutionRetinaRetinal Ganglion CellsRodent ModelRoleScanningSignal TransductionSpeedStructureStructure of central vein of the retinaSystemTechnologyTestingTimeTissuesVascular DiseasesVeinsVelocimetriesVisible RadiationVisionVisual impairmentattenuationautomated segmentationcentral retinal arterydata acquisitiondeep learningdensityimage processingimprovedin vivoinnovationinsightmetabolic ratenew technologynovel strategiespreservationpressureprototyperesponseretina blood vessel structureretina circulationretinal imagingretinal ischemiatraditional therapyvascular factor
项目摘要
Project Summary
Glaucoma damage to the optic nerve and impairment of vision are progressive and irreversible. Understanding
mechanisms of glaucomatous injury will help to develop new approaches for treatments that can be used along
with traditional therapies that lower intraocular pressure (IOP). Recent developments in optical coherence
tomography (OCT) angiography have brought increased attention to the role of the inner retinal circulation in
glaucoma. To improve our understanding of retinal vascular alterations in glaucoma, we can take advantage of
recent developments in visible-light OCT (vis-OCT) to characterize simultaneously tissue structure, vessel
density, blood flow and oxygenation. The goal of this project is to further advance vis-OCT by attaining
capillary-level measurements, test the value of measuring their local alterations as early indicators of glaucoma
and glaucomatous progression and use this to evaluate impaired retinal autoregulation from retinal ganglion
cell (RGC) loss as a potential cause of increased susceptibility in advanced glaucoma.
In Specific Aim 1 we will develop high-speed, high-sensitivity, high-resolution vis-OCT. The speed will be
double that of the current system. A more stable supercontinuum laser will be used to improve system
sensitivity, and a tighter focus will be used to improve lateral resolution. This will enable complete detection of
capillaries that may be vulnerable to vascular dysfunction.
Specific Aim 2 will develop quantitative OCT angiography, velocimetry and oximetry in capillaries as well as
arteries and veins. Building on the high-resolution, high-contrast scans acquired in Aim 1, we will use machine
learning to segment capillary plexuses, and advanced image processing to extract capillary architecture. Aided
by this capillary architecture, we will automatically measure blood flow and oxygenation in capillary segments
and incorporate them into a real-time platform.
Specific Aim 3 will use this system to demonstrate that acute loss of RGCs, produced by optic nerve
transection, alters retinal capillary plexus density, oximetry and velocimetry over time and that these changes
precede altered oximetry and flow in larger retinal vessels. We will also show that loss of RGCs impairs the
autoregulatory response to acute IOP challenge.
In Specific Aim 4, we will demonstrate that optic nerve injury in a model of controlled, elevated IOP produces
early alterations in capillary velocimetry, oximetry and autoregulation, show that they are more persistent with
advanced injury, and demonstrate the pathophysiologic consequences of these observations.
Successful development of this new technology will improve methods of early glaucoma diagnosis and
detection of progression. Better understanding of retinal vascular factors that lead to increased susceptibility in
advanced glaucoma will lead to improved treatments for these highly vulnerable patients.
项目摘要
对视神经和视力损害的青光眼损害是进行性和不可逆的。理解
青光眼损伤机制将有助于开发可用于沿途使用的新方法
传统的疗法降低了眼内压(IOP)。光学连贯性的最新发展
层析成像(OCT)血管造影引起了人们对内部视网膜循环作用的关注
青光眼。为了提高我们对青光眼视网膜血管改变的理解,我们可以利用
可见光的OCT(Vis-OCT)的最新发展,以同时表征组织结构,血管
密度,血流和氧合。该项目的目的是通过达到进一步的促进
毛细管水平的测量,测试其局部变化作为青光眼的早期指标的价值
和青光眼进展,并使用它来评估视网膜神经节的视网膜自动调节受损
细胞(RGC)丢失是高级青光眼易感性增加的潜在原因。
在特定目标1中,我们将开发高速,高敏性,高分辨率相关。速度将是
当前系统的两倍。将使用更稳定的超局部激光器来改善系统
灵敏度和更紧密的焦点将用于改善横向分辨率。这将使能够完全检测
可能容易受到血管功能障碍的毛细血管。
特定的目标2将在毛细血管以及
动脉和静脉。在AIM 1中获得的高分辨率,高对比度扫描的基础上,我们将使用机器
学会分割毛细管丛和高级图像处理以提取毛细管体系结构。帮助
通过这种毛细管体系结构,我们将自动测量毛细血管段中的血流和氧合
并将它们纳入实时平台。
特定目标3将使用该系统来证明由视神经产生的RGC的急性损失
横向,变化视网膜毛细血丛密度,血氧仪和速度法随着时间的流逝而变化
在较大的视网膜血管中改变了血氧饱和度和流动。我们还将证明RGC的损失会损害
对急性IOP挑战的自动调节反应。
在特定的目标4中,我们将证明在受控的,升高的IOP产生的模型中,视神经损伤
毛细管速度法,血氧仪和自动调节的早期改变表明,它们更持久
晚期损伤,并证明了这些观察结果的病理生理后果。
这项新技术的成功开发将改善早期青光眼诊断方法和
检测进展。更好地了解视网膜血管因素,从而提高了易感性
晚期青光眼将为这些高度脆弱的患者提供改进的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yali Jia其他文献
Yali Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yali Jia', 18)}}的其他基金
Visible-light OCT angiography, velocimetry, and oximetry for characterizing retinal vascular alterations in glaucoma
可见光 OCT 血管造影、测速和血氧测定法用于表征青光眼视网膜血管改变
- 批准号:
10232055 - 财政年份:2020
- 资助金额:
$ 50.07万 - 项目类别:
Functional Optical Coherence Tomography-derived Biomarkers for Diabetic Retinopathy
功能性光学相干断层扫描衍生的糖尿病视网膜病变生物标志物
- 批准号:
8832474 - 财政年份:2014
- 资助金额:
$ 50.07万 - 项目类别:
Translational Vision Science Research at Oregon Health & Science University
俄勒冈健康中心的转化视觉科学研究
- 批准号:
10463674 - 财政年份:2013
- 资助金额:
$ 50.07万 - 项目类别:
Translational Vision Science Research at Oregon Health & Science University
俄勒冈健康中心的转化视觉科学研究
- 批准号:
10249949 - 财政年份:2013
- 资助金额:
$ 50.07万 - 项目类别:
Translational Vision Science Research at Oregon Health & Science University
俄勒冈健康中心的转化视觉科学研究
- 批准号:
10667479 - 财政年份:2013
- 资助金额:
$ 50.07万 - 项目类别:
相似海外基金
Electronic Cigarettes: Emerging Ingredients, Acids, Toxicants, and Indicators of Non-Tobacco Nicotine
电子烟:新兴成分、酸、有毒物质和非烟草尼古丁指标
- 批准号:
10884691 - 财政年份:2023
- 资助金额:
$ 50.07万 - 项目类别:
Visible-light OCT angiography, velocimetry, and oximetry for characterizing retinal vascular alterations in glaucoma
可见光 OCT 血管造影、测速和血氧测定法用于表征青光眼视网膜血管改变
- 批准号:
10232055 - 财政年份:2020
- 资助金额:
$ 50.07万 - 项目类别:
Oxidative Response Networks in Chagasic Cardiomyopathy
恰加斯心肌病的氧化反应网络
- 批准号:
7567886 - 财政年份:2009
- 资助金额:
$ 50.07万 - 项目类别:
Oxidative Response Networks in Chagasic Cardiomyopathy
恰加斯心肌病的氧化反应网络
- 批准号:
8210908 - 财政年份:2009
- 资助金额:
$ 50.07万 - 项目类别: