Generation and characterization of a Cre-Lox regulated transgenic zebrafish model of SBMA
Cre-Lox 调节的 SBMA 转基因斑马鱼模型的生成和表征
基本信息
- 批准号:10784254
- 负责人:
- 金额:$ 15.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-11 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AR geneActinsAdultAffectAndrogen ReceptorAndrogensAnimalsBiochemicalBiological AssayBiologyBirthBreedingCAG repeatChemicalsClinical Trials DesignCollaborationsComplementary DNACre lox recombination systemCre-LoxPDNA BindingDNA cassetteDataDedicationsDependenceDiseaseDsRedExhibitsFemaleFunctional disorderFundingFutureGenerationsGeneticGenetic RecombinationGenotypeGlutamineGoalsHeartHistologyHormone ReceptorHumanIn VitroKennedy SyndromeLaboratoriesLengthLibrariesLigand Binding DomainLigandsLimb structureLinkLoxP-flanked alleleMaintenanceMicroscopyModelingModificationMolecularMotorMotor ActivityMotor NeuronsMovementMusMuscle WeaknessMuscular AtrophyNational Institute of Neurological Disorders and StrokeNerve DegenerationNeuroanatomyNeurodegenerative DisordersNeuromuscular DiseasesPartner in relationshipPathogenesisPathologyPatientsPharmaceutical PreparationsPhenotypeProcessProductionPropertyProteinsResearchResearch PersonnelRodent ModelRoleScienceSiteSkeletal MuscleSpecificitySpeedStanoloneStructureStudy modelsSwimmingSystemTerminator CodonTherapeuticTherapeutic InterventionTimeTissuesTransgenesTransgenic OrganismsTranslatingValidationVertebratesZebrafishcell typecohortcostcost comparisonhuman diseasein vivoinducible Cremalemenmodel organismmolecular pathologymotor deficitmotor disordermouse modelmuscle physiologyneuromuscularpatient populationpharmacologicpolyglutaminepromoterreceptorreceptor expressionreceptor functionspinal and bulbar muscular atrophytherapeutic developmenttherapeutic targettransgene expression
项目摘要
Spinal and bulbar muscular atrophy (SBMA or Kennedy's disease) is a slowly progressive, X-linked
neuromuscular disease affecting men. It is caused by the expansion of a CAG repeat within the androgen
receptor (AR) gene, encoding a glutamine tract in the protein. With no cure or therapy, identifying potential
therapeutic interventions for this patient population is pressing. We aim to create a Cre-inducible, low cost, and
high-throughput model of SBMA using zebrafish. Discoveries made from zebrafish research are highly
translatable to humans since zebrafish are vertebrates with extensive structural homology to human
neuroanatomy and muscle physiology. More specifically for SBMA patients, zebrafish express an AR that is
highly homologous in structure and function to human AR. Cre-inducibility of the human AR transgene will enable
the production of founder lines that are able to express high levels of the toxic polyglutamine-expanded AR. We
hypothesize this will lead to robust motor dysfunction in larval zebrafish. These larval zebrafish modeling SBMA
will be amenable to quick (over 1-2 weeks) chemical and drug library screens, or genetic modification(s) to
identify modulators of motor function. Such assays could be set up within only a few days and at a very low cost
compared to such assays in rodent models. Moreover, tissue specific Cre zebrafish lines can be crossed with
these SBMA zebrafish in future studies to investigate the relative role of motor neurons verses skeletal muscle
in the onset and progression of SBMA pathogenesis. A better understanding of the relative roles of each of these
cell types in disease will support clinical trial design for SBMA patients. Further, because SBMA shares properties
with other neurodegenerative, neuromuscular, and polyglutamine diseases, therapeutic targets identified in the
SBMA zebrafish model may also be applicable to some of these other disorders.
脊柱和鳞茎肌肉萎缩(SBMA或肯尼迪氏病)是一种缓慢的X连锁
神经肌肉疾病影响男性。它是由雄激素内CAG重复膨胀引起的
受体(AR)基因,编码蛋白质中的谷氨酰胺道。没有治愈或治疗,确定潜力
该患者人群的治疗干预措施正在紧迫。我们旨在创建一个可诱导的,低成本,并且
使用斑马鱼的SBMA高通量模型。斑马鱼研究的发现很高
可以翻译为人类,因为斑马鱼是脊椎动物,与人类具有广泛的结构同源性
神经解剖学和肌肉生理。斑马鱼更具体地适用于SBMA患者
与人类AR的结构和功能高度同源。人类AR转基因的Cre-Cre-odibens将启用
能够表达高水平有毒多谷氨酰胺膨胀AR的创始人线的产生。我们
假设这将导致幼虫斑马鱼中强大的运动功能障碍。这些幼虫斑马鱼建模SBMA
将适合快速(超过1-2周)化学和药物库筛选,或者遗传修饰
识别运动功能的调节器。这样的测定可以在短短几天内进行,并且成本非常低
与啮齿动物模型中的这种测定相比。此外,可以与组织特异性的斑马鱼线交叉
这些SBMA斑马鱼在未来的研究中研究了运动神经元的相对作用,骨骼肌
在SBMA发病机理的发作和进展中。更好地理解每个这些的相对作用
疾病的细胞类型将支持SBMA患者的临床试验设计。此外,由于SBMA共享属性
使用其他神经退行性,神经肌肉和多谷氨酰胺疾病,在
SBMA斑马鱼模型也可能适用于其他一些疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather L Montie其他文献
Heather L Montie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather L Montie', 18)}}的其他基金
Generation and characterization of a zebrafish model of SBMA
SBMA 斑马鱼模型的生成和表征
- 批准号:
9435195 - 财政年份:2017
- 资助金额:
$ 15.16万 - 项目类别:
相似海外基金
EGF Receptor Endocytosis: Mechanisms and Role in Signaling
EGF 受体内吞作用:机制及其在信号传导中的作用
- 批准号:
10552100 - 财政年份:2023
- 资助金额:
$ 15.16万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 15.16万 - 项目类别:
Modulators of cardiomyocyte structure to promote functional recovery during cardiac regeneration and repair
心肌细胞结构调节剂促进心脏再生和修复过程中的功能恢复
- 批准号:
10751640 - 财政年份:2023
- 资助金额:
$ 15.16万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 15.16万 - 项目类别:
Investigating the mechanisms of stereocilia length regulation and innovative strategies for restoring hearing
研究静纤毛长度调节机制和恢复听力的创新策略
- 批准号:
10678569 - 财政年份:2023
- 资助金额:
$ 15.16万 - 项目类别: