Using Common Fund Datasets to Illuminate Drug-Microbial Interactions
使用共同基金数据集阐明药物-微生物相互作用
基本信息
- 批准号:10777339
- 负责人:
- 金额:$ 30.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAdverse drug effectAsthmaBacteriaBiochemicalBrainCarbohydratesCellsClinicalCommunitiesComplexDataData SetDatabasesDecarboxylationDiabetes MellitusDiseaseDockingDrug CatalogsDrug InteractionsDrug TargetingEnzyme InteractionEnzymesExhibitsExperimental DesignsFermentationFundingFunding OpportunitiesFutureGastrointestinal tract structureGenesGenomeGoalsHealthHumanHuman MicrobiomeHydrolysisIndividualInvestigationKnowledgeLinkLiverLungMalignant NeoplasmsMeasuresMetabolicMetabolic BiotransformationMetabolismMethodsMolecularNutrientObesityParticipantPharmaceutical PreparationsPharmacologic ActionsPilot ProjectsProcessProteinsReactionResearchResearch DesignResourcesRoleShotgunsSiteTechniquesTestingToxic effectUnited States National Institutes of HealthWorkbacterial communitycohortdeacylationdeep learningdeep learning modeldehalogenationdehydroxylationdemethylationdesigndietarydrug metabolismexperimental studygastrointestinalgut microbesgut microbiomegut microbiotainsightmachine learning methodmicrobialmicrobial communitymicrobial productsmicrobiome compositionmicrobiotamicroorganism interactionnovelpatient populationprebioticspredictive toolsscreeningtoolweb sitewhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
Each human is, on average, colonized by 1014 microbial cells that mostly reside in the gastrointestinal track.
Research in the last two decades has uncovered the central role of this microbial community in human health
and disease. A pressing challenge, however, is the lack of understanding of microbial drug metabolism.
Experimental studies, clinical observations, and anecdotal examples demonstrate that microbial enzymes alter
drugs through common enzymatic transformations such as reduction, hydrolysis, dehydroxylation,
demethylation, and others. Despite progress, there lacks a systematic approach for the discovery and analysis
for such transformations, thus hindering the design and interpretation of experimental studies. There is therefore
a need to establish workflows to explore such transformations.
We investigate in this proposal microbial drug metabolism at the molecular and community levels. We are
proposing to use data from two Common Fund data sets to conduct this investigation. Illuminating the Druggable
Genome (IDG) catalogues drugs and their pharmacologic action, while the NIH Human Microbiome Project
(HMP) provides detailed gut microbial data for cohorts. We are also proposing to use our deep-learning tools to
predict the likelihood of interaction between microbial enzymes and drugs (Aim 1), and to predict putative
derivative products due to this interaction (Aim 2). Our tools (CSI for Aim 1, and GNN-SOM and PROXIMAL for
Aim 2) have already been validated on other datasets and in other studies, and they will be adapted for microbial
enzymes and drugs based on data culled from IDG and HMP and other resources. The workflows established
in Aims 1 and 2 will be utilized to conduct a pilot study (Aim 3) to investigate the extent of functional redundancy
towards drugs within microbial communities of healthy individuals that are culled from HMP.
The strength of our Approach therefore lies in: i) adapting novel, state-of-the-art deep-learning models to predict
microbial enzyme promiscuity on drugs, ii) providing biochemically explainable drug products, and iii) exploring
how drug microbial metabolism is a function of microbial community composition. The Significance of this
research is that it provides an explainable hypothesis of microbial drug metabolism. The work is impactful as it
will enable further studies, such as exploring the functional redundancy of a microbial community towards drugs
(as planned in Aim 3) and designing and interpreting experimental studies involving the impact of the gut
microbiota on drugs. The proposed work is appropriate for this funding opportunity as it curates and annotates
data using novel deep-learning approaches and creates a previously unexplored link between the HMP and IDG.
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soha Hassoun其他文献
Soha Hassoun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soha Hassoun', 18)}}的其他基金
Deep Learning Models for Metabolomics Analysis
用于代谢组学分析的深度学习模型
- 批准号:
10552395 - 财政年份:2023
- 资助金额:
$ 30.07万 - 项目类别:
Computational Techniques for Advancing Untargeted Metabolomics Analysis
推进非靶向代谢组学分析的计算技术
- 批准号:
10022125 - 财政年份:2019
- 资助金额:
$ 30.07万 - 项目类别:
Computational Techniques for Advancing Untargeted Metabolomics Analysis
推进非靶向代谢组学分析的计算技术
- 批准号:
10394012 - 财政年份:2019
- 资助金额:
$ 30.07万 - 项目类别:
Computational Techniques for Advancing Untargeted Metabolomics Analysis
推进非靶向代谢组学分析的计算技术
- 批准号:
10242075 - 财政年份:2019
- 资助金额:
$ 30.07万 - 项目类别:
Computational Techniques for Advancing Untargeted Metabolomics Analysis
推进非靶向代谢组学分析的计算技术
- 批准号:
10480818 - 财政年份:2019
- 资助金额:
$ 30.07万 - 项目类别:
相似海外基金
Development of small molecule Protease-activated-receptor-2 antagonists as oral asthma therapeutics
开发小分子蛋白酶激活受体 2 拮抗剂作为口服哮喘治疗药物
- 批准号:
10766584 - 财政年份:2023
- 资助金额:
$ 30.07万 - 项目类别:
Development of microencapsulated PI301 targeting lung GABAergic signaling
开发针对肺 GABA 信号传导的微囊 PI301
- 批准号:
10478543 - 财政年份:2022
- 资助金额:
$ 30.07万 - 项目类别:
Traffic Exposure, Maternal Metabolome and Birth Outcomes Study (TEMMBO Study)
交通暴露、母亲代谢组和出生结果研究(TEMMBO 研究)
- 批准号:
10372213 - 财政年份:2021
- 资助金额:
$ 30.07万 - 项目类别:
Promoting Safe Transitions from Hospital to Home for Children with Medical Complexity: A Health Literacy-Informed and Family-Centered Approach
促进患有医疗复杂性的儿童从医院到家庭的安全过渡:一种以健康素养为基础、以家庭为中心的方法
- 批准号:
10610853 - 财政年份:2021
- 资助金额:
$ 30.07万 - 项目类别:
Targeting the Immunometabolic Hub Nlrx1 as a Novel Therapeutic for Asthma
靶向免疫代谢中心 Nlrx1 作为哮喘的新型治疗方法
- 批准号:
10323994 - 财政年份:2021
- 资助金额:
$ 30.07万 - 项目类别: