Breakthrough Tissue and Organ Preservation and Transplantation Using Scaled-Up Nanowarming Technology
利用大规模纳米变暖技术实现突破性组织和器官保存和移植
基本信息
- 批准号:9757813
- 负责人:
- 金额:$ 62.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsAortaArchitectureArteriesBiocompatible MaterialsBiologicalBlood VesselsCellsCellular StructuresConvectionCouplingCryopreservationCryopreserved TissueCryoprotective AgentsCrystal FormationCrystallizationDataDegenerative DisorderDehydrationDevelopmentDevicesElectromagneticsEngineeringEyeFractureFreezingFrequenciesFundingFutureGlassHealth Care CostsHeartHeart TransplantationHeatingHourHumanIceKidneyLifeLinkLiquid substanceLungMagnetic nanoparticlesMagnetismMeasuresMethodsModelingMusNational Heart, Lung, and Blood InstituteNeonatalNitrogenOrganOrgan DonationsOrgan DonorOrgan PreservationOrgan TransplantationOryctolagus cuniculusOutcomePatientsPerformancePolyethylene GlycolsProcessProductionProtocols documentationQuality ControlRattusRecoveryRegenerative MedicineRewarmingRodentSample SizeSamplingSavingsServicesSilicon DioxideSpeedStabilizing AgentsStructureSystemTechniquesTechnologyTemperatureTestingTimeTissue EngineeringTissue PreservationTissue TransplantationTissue ViabilityTissuesToxic effectTransplantationTransplanted tissueTransportationattenuationbiomaterial compatibilityclinical translationcold temperaturecryogenicsfunctional restorationimprovedin vivointerestiron oxide nanoparticlemagnetic fieldnanomaterialsnanoparticlenanoparticle deliverynanowarmingnew technologynovelparticlepreventradio frequencyresponsescale upsuccessthermal stresstissue/organ preservationtransplant modeltransplantation medicinevitreous state
项目摘要
ABSTRACT:
Rewarming biomaterials from the vitrified state is a critical step in obtaining successful cryopreservation.
Successful techniques for rescuing cryopreserved bulk biomaterials and organs would not only provide critical
improvements for donor-organ transport, supply, and matching, but is also a missing link in the potential supply
chain for engineered tissues. Typical freezing processes cause significant damage to biomaterials through ice
crystal formation and cellular dehydration. However, with the aid of cryoprotectant (CPA) solutions,
biospecimens can be stabilized in the vitreous (i.e. “glass” or “amorphous”) state, allowing for long-term
cryopreservation. A number of groups have employed successful techniques for cooling bulk systems to the
vitreous state (including entire rabbit kidneys). Rewarming these vitrified biomaterials is a greater engineering
challenge, due to the critical warming rates (hundreds of oC/min) necessary to avoid devitirification (i.e.
crystallization) during thaw. In addition, non-uniformity in temperature field produces thermal stresses that can
crack the brittle material, and so both speed and uniformity of thaw are of critical importance.
Here we propose to investigate the ability of radiofrequency heated magnetic nanoparticles, or
“nanowarming,” to overcome this major limitation hindering further development of bulk cryopreservation
approaches. Although electromagnetic rewarming has been tried, the direct coupling of the waves to tissue
inherently results in non-uniformity in heating, which leads to cracking and differential viability. At lower
radiofrequencies (RF < 1 MHz) alternating magnetic fields (AMFs) can uniformly penetrate tissues without
attenuation and negligible dielectric coupling. Although these lower frequency fields will be unable to rapidly
heat the tissue on their own, they are ability to produce significant heating through coupling with magnetic (e.g.
iron-oxide) nanoparticles. We have already demonstrated that this approach is able to generate heating rates
rapid enough to avoid devitirification (greater than 200 oC/min) and should scale independent of sample size.
The objective of this study is to refine this novel nanowarming technology for use in cryopreserving biologic
tissues and intact organs for transplant. To this end, in Aim 1 we will scale up the nanoparticle production
process and the size of the RF heating device. In Aim 2 we will optimize CPA and nanoparticle composition
and loading/unloading conditions for vitrification and nanowarming of cells and tissues (arteries). In Aim 3 we
will test these optimized conditions in heart transplant models of increasing size and complexity.
In summary, the focus of this proposal will be to leverage our breakthrough nanowarming technology by
optimizing CPA composition and nanoparticle delivery in a scaled up system capable of vitrifying and
recovering cells, arteries, and intact organs with an eye on future application for cryopreserving tissues and
organs for use in human transplantation.
抽象的:
将生物材料从玻璃化状态复温是获得成功冷冻保存的关键步骤。
拯救冷冻保存的散装生物材料和器官的成功技术不仅可以提供关键的
供体器官运输、供应和匹配方面的改进,但也是潜在供应中缺失的一环
工程组织链典型的冷冻过程会通过冰对生物材料造成严重损害。
晶体形成和细胞脱水然而,在冷冻保护剂(CPA)溶液的帮助下,
生物样本可以稳定在玻璃体(即“玻璃”或“无定形”)状态,从而可以长期保存
许多团体已经采用了成功的技术来冷却散装系统。
玻璃体状态(包括整个兔子肾脏)的复温是一项更大的工程。
挑战,由于避免失透所需的临界升温速率(数百摄氏度/分钟)(即。
融化过程中的结晶)此外,温度场的不均匀性会产生热应力。
使脆性材料破裂,因此解冻的速度和均匀性至关重要。
在这里,我们建议研究射频加热磁性纳米颗粒的能力,或者
“纳米变暖”,以克服阻碍批量冷冻进一步发展的主要限制
尽管已经尝试过电磁复温,但波与组织的直接耦合。
本质上会导致加热不均匀,从而导致开裂和活力较低。
射频 (RF < 1 MHz) 交变磁场 (AMF) 可以均匀地穿透组织,而无需
尽管这些较低频率的场将无法快速衰减和可忽略不计的介电耦合。
自行加热组织,它们能够通过与磁性(例如磁力)耦合产生显着的热量。
我们已经证明这种方法能够产生加热速率。
足够快以避免失透(大于 200 oC/min),并且应该独立于样品大小。
本研究的目的是完善这种新颖的纳米加热技术,用于冷冻保存生物制品
为此,在目标 1 中,我们将扩大纳米颗粒的生产规模。
在目标 2 中,我们将优化 CPA 和纳米颗粒的成分。
以及细胞和组织(动脉)玻璃化和纳米变暖的加载/卸载条件。
将在尺寸和复杂性不断增加的心脏移植模型中测试这些优化条件。
总之,该提案的重点是通过以下方式利用我们突破性的纳米变暖技术:
在能够玻璃化和固化的放大系统中优化 CPA 成分和纳米颗粒输送
恢复细胞、动脉和完整器官,着眼于冷冻组织的未来应用
用于人体移植的器官。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN C BISCHOF其他文献
JOHN C BISCHOF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN C BISCHOF', 18)}}的其他基金
Cryopreservation and nanowarming enables whole liver banking for transplantation, cell therapy and biomedical research
冷冻保存和纳米加温使整个肝脏库能够用于移植、细胞治疗和生物医学研究
- 批准号:
10584878 - 财政年份:2023
- 资助金额:
$ 62.78万 - 项目类别:
Resources for Drosophila embryo cryopreservation at lab and stock center scale
实验室和库存中心规模的果蝇胚胎冷冻保存资源
- 批准号:
10569277 - 财政年份:2023
- 资助金额:
$ 62.78万 - 项目类别:
Subzero preservation of vascular composite allografts
同种异体复合血管的低温保存
- 批准号:
10664308 - 财政年份:2022
- 资助金额:
$ 62.78万 - 项目类别:
Engineering optimization and scaling enables high quality pancreatic islet cryopreservation for banking and transplant
工程优化和扩展可实现高质量胰岛冷冻保存以用于储存和移植
- 批准号:
10343955 - 财政年份:2021
- 资助金额:
$ 62.78万 - 项目类别:
Engineering optimization and scaling enables high quality pancreatic islet cryopreservation for banking and transplant
工程优化和扩展可实现高质量胰岛冷冻保存以用于储存和移植
- 批准号:
10680579 - 财政年份:2021
- 资助金额:
$ 62.78万 - 项目类别:
Engineering optimization and scaling enables high quality pancreatic islet cryopreservation for banking and transplant
工程优化和扩展可实现高质量胰岛冷冻保存以用于储存和移植
- 批准号:
10680579 - 财政年份:2021
- 资助金额:
$ 62.78万 - 项目类别:
Organ banking for transplant—kidney cryopreservation by vitrification and novel nanowarming technology
通过玻璃化和新型纳米加温技术进行移植肾冷冻保存的器官库
- 批准号:
9912760 - 财政年份:2018
- 资助金额:
$ 62.78万 - 项目类别:
Organ banking for transplant--kidney cryopreservation by vitrification and novel nanowarming technology
移植器官库——玻璃化肾脏冷冻保存和新型纳米加温技术
- 批准号:
10657291 - 财政年份:2018
- 资助金额:
$ 62.78万 - 项目类别:
Breakthrough Tissue and Organ Preservation and Transplantation Using Scaled-Up Nanowarming Technology
利用大规模纳米变暖技术实现突破性组织和器官保存和移植
- 批准号:
9980462 - 财政年份:2017
- 资助金额:
$ 62.78万 - 项目类别:
Gold nanoparticle laser warming of cryopreserved zebrafish embryos
金纳米颗粒激光对冷冻斑马鱼胚胎的加温
- 批准号:
10016844 - 财政年份:2017
- 资助金额:
$ 62.78万 - 项目类别:
相似国自然基金
Ca2+/Calcineurin/NFATc1轴介导瓣膜内皮损伤促进主动脉瓣钙化机制的研究
- 批准号:81800343
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
NLRP3炎症小体在主动脉瓣钙化中的作用及机制研究
- 批准号:81670351
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
PC1调控平滑肌细胞表型转化在促进主动脉夹层形成中的作用及其机制研究
- 批准号:81570438
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
适合腔内治疗的兔新型腹主动脉瘤模型建立及血流动力学对新模型的作用及机制
- 批准号:81501569
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
彩色实时三维超声心动图评价主动脉瓣反流容积的实验研究
- 批准号:81271583
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 62.78万 - 项目类别:
Delineating Mechanisms of Impaired Vasoreactivity in Thermoneutrality
描述热中性血管反应性受损的机制
- 批准号:
10701111 - 财政年份:2023
- 资助金额:
$ 62.78万 - 项目类别:
Cardiac protective mechanisms of melanocortin system activation
黑皮质素系统激活的心脏保护机制
- 批准号:
10585732 - 财政年份:2023
- 资助金额:
$ 62.78万 - 项目类别:
Prospective Effects of Early Life Stress and Protective Factors on Vascular Function and Inflammation in Young Adulthood
早期生活压力和保护因素对青年期血管功能和炎症的前瞻性影响
- 批准号:
10555128 - 财政年份:2023
- 资助金额:
$ 62.78万 - 项目类别:
Non-invasive measurements of central blood pressures by RF sensors
通过射频传感器无创测量中心血压
- 批准号:
10649077 - 财政年份:2023
- 资助金额:
$ 62.78万 - 项目类别: