Systematic Targeting of Oncogene Interacting Proteins to Reveal New Therapeutic Strategies

系统靶向癌基因相互作用蛋白以揭示新的治疗策略

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Cancer is an intimate part of us, recruiting a complex array of endogenous cellular processes to drive its fitness. Cancer initiation and progression is frequently the result of coordinated dysregulation of multiple signaling pathways by key oncogenes that strategically coopt the cancer signaling network. These oncogenes rarely work in isolation but instead form intricate higher-order complexes and participate in multifaceted networks of protein- protein interactions. One of the most commonly mutated proteins across all of human cancers is the phosphoinositide 3-kinase (PI3K) oncogene, a lipid kinase that can exploit diverse cellular programs to drive disease, including increased proliferation, survival, motility, cell growth and metabolic activity. Broad inhibition of PI3K is known to generate systemic toxicities, especially metabolic, which limit its clinical development. However, targeting PI3K interacting proteins may enable a safer alternative, by interrupting PI3K oncogenic activity while minimizing metabolic dysregulation. The long-term goal of this proposal is to deepen and refine our understanding of oncogene regulation of cancer signaling networks using systematic genetic, proteomic, and mathematical modeling approaches. The overall objective of this proposal is to identify the role of PI3K interacting proteins in modulating PI3K activity and recruitment of downstream cellular processes and to use this understanding to identify alternative therapeutic targets. This objective will be reached by testing the central hypothesis that PI3K interacting proteins, or downstream signaling pathways, can be modulated to tune PI3K activity and specificity, with the potential to simultaneously reduce malignancy and systemic toxicity. To test this hypothesis, the following three aims will be pursued. (Aim 1) Reveal Regulation of PI3K Activity and Cancer Phenotypes by PIK3CA Interacting Proteins. This aim will use CRISPR/Cas9 gene knockout technology to systematically delete and overexpress genes corresponding to PIK3CA interacting proteins and use live cell microscopy, combined with biochemical measurements, to assess the resulting impact on cell proliferation, survival, growth, motility, and metabolism. (Aim 2) Elucidate Proteomic Exploitation by PI3K as Mediated by PIK3CA Interacting Proteins. Here, PIK3CA interactors that preferentially bind the common H1047R mutant, as well as hits identified from Aim 1, will be subject to global proteomics and phosphoproteomics profiling to identify signaling pathways and biological processes regulated by each PIK3CA interacting protein. (Aim 3) Delineate Mechanisms of PI3K-mediated Manipulation of Pro-Cancer Signaling. Here, a novel computational framework will be developed by uniting data-driven network propagation techniques with mechanistic ordinary differential equation (ODE) modeling to delineate mechanistic pathways linking each PIK3CA interacting protein to its downstream effect. Successful completion of the proposed research will greatly enhance our mechanistic understanding of oncogene regulation in cancer. This will be a significant contribution as it will reveal novel therapeutic strategies to fight cancer while minimizing systemic toxicities.
项目概要/摘要 癌症是我们亲密的一部分,它招募一系列复杂的内源性细胞过程来驱动其健康。 癌症的发生和进展通常是多种信号传导协调失调的结果 战略性地利用癌症信号网络的关键癌基因的通路。这些致癌基因很少起作用 孤立地,而是形成复杂的高阶复合物并参与多方面的蛋白质网络 蛋白质相互作用。所有人类癌症中最常见的突变蛋白之一是 磷酸肌醇 3 激酶 (PI3K) 癌基因,一种脂质激酶,可以利用多种细胞程序来驱动 疾病,包括增殖、存活、运动、细胞生长和代谢活动的增加。广泛抑制 已知 PI3K 会产生全身毒性,尤其是代谢毒性,这限制了其临床开发。然而, 靶向 PI3K 相互作用蛋白可以通过中断 PI3K 致癌活性来实现更安全的替代方案 最大限度地减少代谢失调。该提案的长期目标是深化和完善我们的 利用系统遗传学、蛋白质组学和方法了解癌症信号网络的癌基因调控 数学建模方法。该提案的总体目标是确定 PI3K 相互作用的作用 调节 PI3K 活性和招募下游细胞过程的蛋白质并使用它 了解以确定替代治疗靶点。这一目标将通过测试中央 假设可以通过调节 PI3K 相互作用蛋白或下游信号通路来调整 PI3K 活性和特异性,有可能同时减少恶性肿瘤和全身毒性。为了测试这个 假设,将追求以下三个目标。 (目标 1)揭示 P​​I3K 活性与癌症的调控 PIK3CA 相互作用蛋白的表型。该目标将利用CRISPR/Cas9基因敲除技术 系统地删除和过度表达与 PIK3CA 相互作用蛋白相对应的基因并使用活细胞 显微镜结合生化测量,评估对细胞增殖的影响, 生存、生长、运动和新陈代谢。 (目标 2)阐明 PI3K 介导的蛋白质组开发 PIK3CA 相互作用蛋白。此处,PIK3CA 相互作用子优先结合常见的 H1047R 突变体,如 以及从目标 1 中识别出的命中,将接受全局蛋白质组学和磷酸化蛋白质组学分析,以识别 每个 PIK3CA 相互作用蛋白调节的信号通路和生物过程。 (目标 3)描绘 PI3K 介导的促癌信号转导操纵机制。这里,一个新颖的计算框架 将通过将数据驱动的网络传播技术与机械常微分相结合来开发 方程 (ODE) 建模,描绘将每个 PIK3CA 相互作用蛋白与其自身连接的机制途径 下游效应。成功完成拟议的研究将大大增强我们的机制 了解癌症中癌基因的调控。这将是一个重大贡献,因为它将揭示新颖的 抗癌的治疗策略,同时最大限度地减少全身毒性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehdi Bouhaddou其他文献

Mehdi Bouhaddou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehdi Bouhaddou', 18)}}的其他基金

Decoding Viral Control of Host Kinase Signaling to Design Combination Therapy
解码病毒对宿主激酶信号传导的控制以设计联合疗法
  • 批准号:
    10449933
  • 财政年份:
    2022
  • 资助金额:
    $ 6.09万
  • 项目类别:
Systematic Targeting of Oncogene Interacting Proteins to Reveal New Therapeutic Strategies
系统靶向癌基因相互作用蛋白以揭示新的治疗策略
  • 批准号:
    9901355
  • 财政年份:
    2019
  • 资助金额:
    $ 6.09万
  • 项目类别:

相似国自然基金

基于PXDN-周细胞-血管渗漏轴探讨有氧运动改善肺血管重构机制研究
  • 批准号:
    82370422
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
NEDD4介导IGFBP7泛素化参与有氧运动抑制泛凋亡改善心肌缺血再灌注损伤的机制研究
  • 批准号:
    82302873
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有氧康复运动抑制心外膜脂肪组织Th17细胞分化改善HFpEF所致心房颤动实验研究
  • 批准号:
    82372581
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
代谢产物丁酸介导的PKM2乳酸化修饰调控小胶质细胞极化参与有氧运动发挥脑梗死后神经保护作用的机制研究
  • 批准号:
    82302861
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有氧运动依赖ABCG1调节的GSK-3β/Nrf2/ARE抗氧化机制预防化疗药物5氟尿嘧啶诱导的血管内皮损伤机制探索
  • 批准号:
    82360608
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
  • 批准号:
    10717825
  • 财政年份:
    2023
  • 资助金额:
    $ 6.09万
  • 项目类别:
Elucidating Oncogenic Mechanisms Underlying Wilms Tumor Using Kidney Organoids
使用肾脏类器官阐明肾母细胞瘤的致癌机制
  • 批准号:
    10543184
  • 财政年份:
    2021
  • 资助金额:
    $ 6.09万
  • 项目类别:
Elucidating Oncogenic Mechanisms Underlying Wilms Tumor Using Kidney Organoids
使用肾脏类器官阐明肾母细胞瘤的致癌机制
  • 批准号:
    10324558
  • 财政年份:
    2021
  • 资助金额:
    $ 6.09万
  • 项目类别:
Role of mitochondria in SLE and its cardiovascular complications
线粒体在 SLE 及其心血管并发症中的作用
  • 批准号:
    10652483
  • 财政年份:
    2021
  • 资助金额:
    $ 6.09万
  • 项目类别:
Systematic Targeting of Oncogene Interacting Proteins to Reveal New Therapeutic Strategies
系统靶向癌基因相互作用蛋白以揭示新的治疗策略
  • 批准号:
    9901355
  • 财政年份:
    2019
  • 资助金额:
    $ 6.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了