Identifying Children and Teens at Risk for Early Onset Alcohol Use: An Innovative Application of Machine Learning Algorithms to Prevention
识别有早期饮酒风险的儿童和青少年:机器学习算法在预防中的创新应用
基本信息
- 批准号:9753696
- 负责人:
- 金额:$ 4.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-30 至 2020-07-12
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdolescentAdultAdvertisingAgeAlcohol abuseAlcohol consumptionAlcohol dependenceAlgorithmsAmericanAttentionBehavioralChildChildhoodCocaine DependenceComorbidityDataData SetDependenceDevelopmentEngineeringFraudFutureGoalsImpulsivityIndividualLassoLeast-Squares AnalysisLogistic RegressionsLongitudinal StudiesMachine LearningMethodsModelingNatureNoiseOutcomePerformancePreventionPreventive InterventionProbabilityProceduresPublic HealthRecommendationResearchResourcesRestRiskSamplingSensitivity and SpecificityServicesStatistical MethodsStructureSubstance abuse problemTechniquesTeenagersTestingTimeLineTrainingVictimizationWorkaddictionalcohol screeningbaseclassification treescomputer scienceconduct problemcostdata miningearly alcohol useearly onsetfield studyimprovedinnovationlearning strategylongitudinal datasetmachine learning algorithmmultidrug abuseoutcome predictionprediction algorithmpredictive modelingpreventprospectivepsychologicrandom forestscreeningsearch enginespamspeech recognitionstatisticssuccessunderage drinkingvector
项目摘要
PROJECT SUMMARY
Early onset of alcohol use during adolescence is associated with increased probability of later alcohol
dependence, polydrug abuse, victimization, conduct problems, psychiatric comorbidities, and delayed
achievement of adult milestones. Methods that yield rapid, accurate, and reliable predictions of which children
and teens are at risk for early onset can improve the targeting of prevention interventions and enable the
concentration of resources on the most debilitating and costly cases. One promising and untapped approach
to this prediction problem is machine learning (also called “statistical learning,” “data mining,” or “predictive
modeling”), a class of techniques arising from statistics, computer science, and engineering that seeks to build
data-driven predictive algorithms. These techniques are most noticeably distinguished from “traditional”
statistical methods (e.g., ordinary least squares regression) by their extreme emphasis on prediction of future
cases, rather than explanation of the current data, and thus they may offer dramatic advantages over
traditional approaches to identifying which children and teens will develop early onset alcohol use. This
proposal will explore the potential contribution of machine learning methods by directly comparing their
predictive performance to that of the traditional approach in a large-scale, multisite longitudinal study of the
development of early onset alcohol use (N = 731). If machine learning methods do significantly outperform the
traditional approach, future directions might include the development and implementation of machine-learning-
based screening methods for real-world use. On the other hand, if machine learning methods do not
outperform the traditional approach, this will suggest that at least in the context of the present study (i.e., these
predictors, timeline, and outcome), machine learning does not improve the prediction of early onset alcohol
use. Analyses will investigate whether the performance of machine learning methods varies across the nature
of predictor variables use, the age span covered, and the outcome to be predicted. Thus, the current proposal
uses an extant longitudinal dataset to carry out two specific aims: (1) Train five different machine learning
algorithms and one traditional algorithm (ordinary logistic regression) for predicting later early onset alcohol
use in a subset (70%) of the data. (2) Test these six predictive algorithms on the rest (30%) of the data and
directly compare their predictive performance in multiple contexts.
项目概要
青春期早期饮酒与以后饮酒的可能性增加相关
依赖性、多种药物滥用、受害、行为问题、精神合并症和延迟
快速、准确且可靠地预测哪些儿童达到成人里程碑的方法。
青少年有早发的风险,可以提高预防干预措施的针对性,并使
将资源集中在最令人衰弱且成本最高的案例上,这是一种有前途且尚未开发的方法。
解决这个预测问题的是机器学习(也称为“统计学习”、“数据挖掘”或“预测”)
建模”),一类源自统计学、计算机科学和工程学的技术,旨在构建
这些技术与“传统”技术最明显的区别。
统计方法(例如普通最小二乘回归)极其强调对未来的预测
案例,而不是对当前数据的解释,因此它们可能比
确定哪些儿童和青少年会早期酗酒的传统方法。
该提案将通过直接比较机器学习方法来探索机器学习方法的潜在贡献
在大规模、多地点纵向研究中,与传统方法相比,预测性能
如果机器学习方法确实明显优于早期饮酒的发展(N = 731)。
传统方法,未来的方向可能包括机器学习的开发和实施
另一方面,如果机器学习方法不适用的话。
优于传统方法,这表明至少在本研究的背景下(即,这些
预测因素、时间线和结果),机器学习并不能改善早期酒精发作的预测
分析将调查机器学习方法的性能是否因自然界而异。
预测变量的使用、覆盖的年龄跨度以及要预测的结果因此,目前的建议。
使用现有的纵向数据集来实现两个特定目标:(1)训练五种不同的机器学习
算法和一种传统算法(普通逻辑回归)用于预测稍后早发的酒精
(2) 在其余(30%)的数据上测试这六种预测算法,
直接比较他们在多种情况下的预测表现。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Validating a brief screening measure for early-onset substance use during adolescence in a diverse, nationwide birth cohort.
在全国范围内不同的出生队列中验证青春期早发物质使用的简短筛查措施。
- DOI:
- 发表时间:2022-06
- 期刊:
- 影响因子:4.4
- 作者:Pelham 3rd, William E;Corbin, William R;Meier, Madeline H
- 通讯作者:Meier, Madeline H
When Does Differential Item Functioning Matter for Screening? A Method for Empirical Evaluation.
差异化项目功能何时对筛选很重要?
- DOI:
- 发表时间:2021-03
- 期刊:
- 影响因子:3.8
- 作者:Gonzalez, Oscar;Pelham 3rd, William E
- 通讯作者:Pelham 3rd, William E
Estimating classification consistency of screening measures and quantifying the impact of measurement bias.
估计筛选措施的分类一致性并量化测量偏差的影响。
- DOI:
- 发表时间:2021-07
- 期刊:
- 影响因子:3.6
- 作者:Gonzalez, Oscar;Georgeson, A R;Pelham, William E;Fouladi, Rachel T
- 通讯作者:Fouladi, Rachel T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Ellerbe Pelham III其他文献
William Ellerbe Pelham III的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Ellerbe Pelham III', 18)}}的其他基金
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
The impact of the COVID-19 pandemic on adolescent drinking in a longitudinal cohort spanning 21 U.S. cities
跨越美国 21 个城市的纵向队列研究了 COVID-19 大流行对青少年饮酒的影响
- 批准号:
10471042 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
Family processes underlying adolescent substance use and conduct problems: disentangling correlation and causation
青少年物质使用和行为问题背后的家庭过程:理清相关性和因果关系
- 批准号:
10427677 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
Family processes underlying adolescent substance use and conduct problems: disentangling correlation and causation
青少年物质使用和行为问题背后的家庭过程:理清相关性和因果关系
- 批准号:
10577848 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
The impact of the COVID-19 pandemic on adolescent drinking in a longitudinal cohort spanning 21 U.S. cities
跨越美国 21 个城市的纵向队列研究了 COVID-19 大流行对青少年饮酒的影响
- 批准号:
10579328 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN)Scientific Leadership Center; ADMIN SUPPLEMENT
艾滋病毒/艾滋病干预青少年医学试验网络 (ATN) 科学领导中心;
- 批准号:
10855435 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) Scientific Leadership Center
艾滋病毒/艾滋病干预青少年医学试验网络 (ATN) 科学领导中心
- 批准号:
10595899 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Alpha oscillations and working memory deficits in ADHD: A multimodal imaging investigation
ADHD 中的阿尔法振荡和工作记忆缺陷:多模态成像研究
- 批准号:
10808640 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别: