SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
SCH:头部适应性放射治疗的个性化重新安排
基本信息
- 批准号:10737817
- 负责人:
- 金额:$ 8.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAffectAgingAlgorithmsAnatomyAreaBehaviorCancer ControlCapitalClinicalClinical DataClinical TreatmentCommunitiesCommunity HospitalsComplicationComputer softwareCoupledDataData SetDecision MakingDecision Support SystemsDevelopmentDevicesDiagnosisDoseEconomicsEmerging TechnologiesEnvironmentEquipmentEvaluationEvolutionGoalsHead CancerHead and Neck CancerHead and neck structureHealthHealth PolicyHealth TechnologyHealthcareHumanHuman ResourcesImageIncentivesIndividualInstructionInsurance CarriersInterventionLifeLinear Accelerator Radiotherapy SystemsMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of larynxMalignant neoplasm of pharynxMedical DeviceMedicareMethodologyMethodsModelingModernizationMonitorMorbidity - disease rateNeck CancerNormal tissue morphologyOperations ResearchOrganOutcomeOverdosePatient CarePatient imagingPatientsPhysiciansPoliciesProbabilityProcessPropertyProviderRadiationRadiation therapyRegimenResearchResourcesRiskSMART healthScheduleScienceSelf-Help DevicesSeriesSoftware ToolsStructureSurvivorsSystemSystems IntegrationTechniquesTechnologyTimeToxic effectTumor VolumeUncertain RiskUncertaintyValidationVariantWorkadvanced analyticsbasecancer radiation therapychemoradiationclinical implementationconnected healthcostdesignevidence basehead and neck cancer patientimage guided radiation therapyimprovedin silicoindividual patientindividualized medicineinnovationinsightlow and middle-income countriesmalignant mouth neoplasmmodels and simulationmultidisciplinarynew technologynext generationnovelprogramsprototyperadiation-induced injuryresponserisk stratificationside effectsoft tissuestandard caresupport toolstheoriestooltreatment planningtreatment responsetreatment stratificationtumor
项目摘要
Head and neck cancers (HNCs) account for nearly 3% of all cancers in the U.S. and most
commonly affect aging individuals. While chemo-radiotherapy is the standard treatment
approach for HNC, the method is known to cause substantial side-effects. In particular,
anatomical changes occurring during the treatment may result in under-coverage of the clinical
target volume or over-dosage of organs at risk.
The project will develop novel optimization models for Adaptive Radiation Therapy (ART) – a
customized treatment planning approach for individual patients designed by evaluating the
systematic and random variations in tumor response. The models will use imaging data of tumor
volume and normal tissue complication probabilities to determine the optimal number and timing
of treatment replans. The models will provide personalized optimization through sequential
decision-making based on response to treatment, as well as optimization and evaluation of
simple threshold replanning policies often used by doctors. Optimal behavior in the face of
conflicting payer/provider perspectives for emerging technologies will also be analyzed using
mechanism design techniques. ART requires information about patient-state as well as transition
probabilities describing the tumor's evolution over time. Since the process inherently calls for
sequential decision-making under uncertainty, the proposed optimization models use a Markov
Decision Process (MDP). The resulting optimal policies may be difficult to implement in practice,
especially in centers lacking state-of-the-art equipment. Therefore, the proposed work will further
evaluate simple threshold replanning policies using a bilevel programming framework. In
particular, the bilevel program will find threshold values for various patient classes by minimizing
the deviation from the MDP-prescribed policy.
The proposed framework offers multiple avenues for methodological contributions. The novel
MDP design framework is an incredibly powerful tool that can be used to model many
interesting questions. We will explore ways of discretizing the continuous state spaces and
estimating transition probabilities based on patient imaging data. We will explore algorithms for
solving bilevel programs, especially utilizing the structure and properties of the lower-level MDP
models. Finally, we will study applications of the principal-agent framework from economics in
modeling payer/provider interactions for emerging clinical therapies.
RELEVANCE (See instructions):
This study uses novel models to develop and validate an integrated approach to reduce cancer
radiotherapy side effects while maintaining or improving cancer control. It will maximize efficiency for
patients and providers. Its findings will inform decisions about individual radiation planning, optimize risk-
stratified treatment, and healthcare policy implementation of effective new technology interventions.
头颈癌(HNC)占美国所有癌症和大多数癌症的近3%
通常会影响衰老的个体。虽然化学疗法是标准治疗
HNC的方法,已知该方法会引起大量的副作用。尤其,
治疗期间发生的解剖变化可能导致临床覆盖不足
有风险的器官的目标量或过度剂量。
该项目将开发自适应放射疗法(ART)的新型优化模型 -
通过评估的单个患者的定制治疗计划方法
肿瘤反应的系统和随机变化。这些模型将使用肿瘤的成像数据
数量和正常组织并发症的可能性,以确定最佳数量和时机
治疗补充。模型将通过顺序提供个性化优化
基于对治疗的反应以及优化和评估的决策
简单的阈值重建政策经常被医生使用。面对最佳行为
还将使用相互矛盾的付款人/提供者的观点来分析新兴技术的观点
机理设计技术。艺术需要有关患者国家和过渡的信息
概率描述了肿瘤的进化。由于该过程固有地要求
在不确定性下进行的顺序决策,提出的优化模型使用马尔可夫
决策过程(MDP)。在实践中可能难以实施最佳的最佳政策,
特别是在缺乏最先进设备的中心中。因此,拟议的工作将进一步
使用双重编程框架评估简单的阈值重新义策略。在
尤其是,双重计划将通过最小化各种患者类别的阈值。
与MDP规定的政策背道而驰。
提出的框架为方法论贡献提供了多种途径。小说
MDP设计框架是一种非常强大的工具,可用于建模许多工具
有趣的问题。我们将探索离散连续状态空间和
根据患者成像数据估计过渡可能性。我们将探索算法
解决双层程序,特别是利用低级MDP的结构和特性
型号。最后,我们将研究经济学的主要代理框架的应用
建模用于新兴临床疗法的付款人/提供者的互动。
相关性(请参阅说明):
这项研究使用新型模型来开发和验证一种减少癌症的综合方法
放疗副作用,同时维持或改善癌症控制。它将最大化效率
病人和提供者。它的发现将为您的个人辐射计划的决定提供信息,优化风险 -
分层的治疗和医疗保健政策实施有效的新技术干预措施。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clifton David Fuller其他文献
191 Dose prescription variability in Oropharynx Cancer Radiotherapy
- DOI:
10.1016/s0167-8140(24)00538-3 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:
- 作者:
Christian R Hansen;Tony Tadic;Andrea McNiven;Jens Petersen;Sharma Manju;Gareth Price;Mohamed A Naser;Pernille Lassen;Jens Overgaard;Lachlan McDowell;Clifton David Fuller;David Thomsen;Sue S Yom;J⊘rgen Johansen;Jeppe Friborg;Andrew Hope - 通讯作者:
Andrew Hope
Clifton David Fuller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clifton David Fuller', 18)}}的其他基金
Quantitative Imaging Biomarker Prospective Validation of Dynamic Contrast-Enhanced MRI as a Metric of Orodental Injury After Radiotherapy (QI-ProVE-MRI)
动态对比增强 MRI 的定量成像生物标志物前瞻性验证作为放射治疗后口腔牙齿损伤的指标 (QI-ProVE-MRI)
- 批准号:
10668570 - 财政年份:2023
- 资助金额:
$ 8.39万 - 项目类别:
Diversity Supplement: SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head and Neck Cancer
多样性补充:SCH:头颈癌适应性放射治疗的个性化重新安排
- 批准号:
10599546 - 财政年份:2021
- 资助金额:
$ 8.39万 - 项目类别:
SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
SCH:头部适应性放射治疗的个性化重新安排
- 批准号:
10397692 - 财政年份:2021
- 资助金额:
$ 8.39万 - 项目类别:
Diversity Supplement: SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head and Neck Cancer
多样性补充:SCH:头颈癌适应性放射治疗的个性化重新安排
- 批准号:
10599545 - 财政年份:2021
- 资助金额:
$ 8.39万 - 项目类别:
SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
SCH:头部适应性放射治疗的个性化重新安排
- 批准号:
10628045 - 财政年份:2021
- 资助金额:
$ 8.39万 - 项目类别:
SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
SCH:头部适应性放射治疗的个性化重新安排
- 批准号:
10737816 - 财政年份:2021
- 资助金额:
$ 8.39万 - 项目类别:
Administrative Supplement to Support Collaborations to Improve AIML-Readiness of NIH-Supported Data for Parent Award SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
支持合作的行政补充,以提高 NIH 支持的家长奖数据的 AIML 就绪性 SCH:头部自适应放射治疗的个性化重新安排
- 批准号:
10594327 - 财政年份:2021
- 资助金额:
$ 8.39万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 8.39万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 8.39万 - 项目类别:
Impact of Medicaid Prescription Cap Policies on Treatment Outcomes for Opioid Use Disorder: A National Mixed Methods Study
医疗补助处方上限政策对阿片类药物使用障碍治疗结果的影响:一项国家混合方法研究
- 批准号:
10637024 - 财政年份:2023
- 资助金额:
$ 8.39万 - 项目类别:
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 8.39万 - 项目类别: