Administrative Supplement to Support Collaborations to Improve AIML-Readiness of NIH-Supported Data for Parent Award SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
支持合作的行政补充,以提高 NIH 支持的家长奖数据的 AIML 就绪性 SCH:头部自适应放射治疗的个性化重新安排
基本信息
- 批准号:10594327
- 负责人:
- 金额:$ 32.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdministrative SupplementAdverse eventAftercareAgreementArtificial IntelligenceAwardBarium swallowBenchmarkingCollaborationsCollectionCommon Terminology Criteria for Adverse EventsCommunitiesComplicationConsensusDataData PoolingData SetDatabasesDeglutitionDepositionDevelopmentDigital Imaging and Communications in MedicineDoseEnteral FeedingEquipment and supply inventoriesFrequenciesFunctional disorderFundingHead CancerHead and neck structureImageIndividualInformation DisseminationInstitutionLabelMachine LearningMagnetic Resonance ImagingManuscriptsMeasuresMedical ImagingModelingNeck CancerNomenclatureNormal tissue morphologyOntologyOrganOutcomeParentsPathologicPatient Outcomes AssessmentsPatientsPhysiciansPhysicsPrevalenceProbabilityProceduresProcessProtocols documentationPublicationsRadiation OncologyRadiation therapyRadiology SpecialtyReadinessRegistriesReportingResearchRiskRoentgen RaysSerial Magnetic Resonance ImagingStatistical ModelsSymptomsTestingThe Cancer Imaging ArchiveTherapeuticTimeToxic effectTumor TissueUnited States National Institutes of HealthValidationautomated segmentationbasecancer imagingcancer therapycohortcrowdsourcingdata curationdata integritydata repositorydesignexperiencehead and neck cancer patientimaging Segmentationimprovedinterestlarge-scale databaselearning communitymachine learning modelmedical attentionparent grantpersonalized medicinepredicting responsepredictive modelingprospectiveradiomicsrepositoryresponseserial imagingtherapy outcometreatment planningtreatment responsetumor
项目摘要
Project Summary
We have collected, under our parent award (1R01CA257814-01), a database of serial multi-parametric
magnetic resonance (MR) images as well as patient-reported and objective toxicity measures for more than
400 head and neck (HNC) patients, at pre-, on-, and post-therapy. We plan to utilize this data, in complete
alignment with the first specific aim of the parent award, to effectively quantify treatment-related response
on tumor/node and normal tissue in order to develop personalized treatment planning adaptations for
individual HNC patients. As the most data-rich image toxicity cohort to the best of our knowledge, however,
this database necessitates rigorous curation to be utilized for artificial intelligence/machine learning (AI/ML)
approaches to predict, for example, tumor complication probability (TCP) and normal tissue complication
probability (NTCP). Specifically, multi-observer segmentation of tumor and normal tissue regions of interest is
required. Additionally, dissemination efforts are necessary to engage experts from AI/ML communities to
develop AI/ML-approaches for auto-segmentation models, and TCP/NTCP predictions. To this end, we plan to
undertake three specific aims. Through our first specific aim, we plan to curate our serial multi-parametric,
multi time-point MRI dataset (accompanied with extracted radiomics) for therapeutic response and TCP
prediction through assembling a team of three physicians to obtain the ground-truth segmented images. We
further plan to deposit the curated segmented images as a dataset to The Cancer Imaging Archive (TCIA). As
our second specific aim, we plan for curation and public deposition of matched image-dose multi-time-point
acute and late toxicity metrics to be disseminated to both AI/ML experts for NTCP modeling. We will
particularly include patient-reported MD Anderson Symptom Inventory-Head and Neck (MDASI-HN) toxicity
outcomes, Common Toxicity Criteria- Adverse Events (CTC-AE) physician-ranked toxicity, and objective
measures of swallowing dysfunction such as modified barium swallowing and tube-feeding assessments. In
the third specific aim, we plan to design and execute a public crowdsourced challenge for serial image dose-
response prediction for both TCP and NTCP prediction modeling tasks. Based on the test dataset that we plan
to release after the execution of the challenge, we will conduct a post-challenge analysis on the submitted
models (e.g., false-positive, and false-negative cases), and disseminate the best results as manuscripts to be
submitted for publications and presentations. If successful, the proposed efforts are directly responsive to the
need for AI/ML-ready datasets to be utilized for cancer treatment.
项目概要
根据我们的家长奖(1R01CA257814-01),我们收集了一个连续多参数数据库
磁共振(MR)图像以及患者报告和客观毒性测量超过
400 名头颈 (HNC) 患者在治疗前、治疗中和治疗后。我们计划完整地利用这些数据
与家长奖的第一个具体目标保持一致,以有效量化与治疗相关的反应
肿瘤/淋巴结和正常组织,以便制定个性化治疗计划适应
个别 HNC 患者。然而,据我们所知,作为数据最丰富的图像毒性队列,
该数据库需要严格的管理才能用于人工智能/机器学习 (AI/ML)
预测肿瘤并发症概率 (TCP) 和正常组织并发症等的方法
概率(NTCP)。具体来说,肿瘤和正常组织感兴趣区域的多观察者分割是
必需的。此外,还需要进行传播工作,让 AI/ML 社区的专家参与进来
开发用于自动分割模型和 TCP/NTCP 预测的 AI/ML 方法。为此,我们计划
实现三个具体目标。通过我们的第一个具体目标,我们计划策划我们的系列多参数,
用于治疗反应和 TCP 的多时间点 MRI 数据集(附带提取的放射组学)
通过组建由三名医生组成的团队来获得真实的分割图像来进行预测。我们
进一步计划将精选的分割图像作为数据集存放到癌症影像档案馆 (TCIA)。作为
我们的第二个具体目标是,我们计划策划和公开沉积匹配的图像剂量多时间点
急性和晚期毒性指标将分发给 AI/ML 专家以进行 NTCP 建模。我们将
特别包括患者报告的 MD 安德森症状清单 - 头颈 (MDASI-HN) 毒性
结果、常见毒性标准 - 不良事件 (CTC-AE) 医生分级毒性和客观
吞咽功能障碍的测量,例如改良的钡剂吞咽和管饲评估。在
第三个具体目标,我们计划设计并执行针对连续图像剂量的公共众包挑战-
TCP 和 NTCP 预测建模任务的响应预测。基于我们计划的测试数据集
为了在挑战执行后发布,我们将对提交的挑战进行后分析
模型(例如,假阳性和假阴性案例),并将最佳结果作为手稿传播
提交出版物和演示。如果成功,拟议的努力将直接响应
需要将人工智能/机器学习就绪的数据集用于癌症治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clifton David Fuller其他文献
Clifton David Fuller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clifton David Fuller', 18)}}的其他基金
Quantitative Imaging Biomarker Prospective Validation of Dynamic Contrast-Enhanced MRI as a Metric of Orodental Injury After Radiotherapy (QI-ProVE-MRI)
动态对比增强 MRI 的定量成像生物标志物前瞻性验证作为放射治疗后口腔牙齿损伤的指标 (QI-ProVE-MRI)
- 批准号:
10668570 - 财政年份:2023
- 资助金额:
$ 32.04万 - 项目类别:
Diversity Supplement: SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head and Neck Cancer
多样性补充:SCH:头颈癌适应性放射治疗的个性化重新安排
- 批准号:
10599546 - 财政年份:2021
- 资助金额:
$ 32.04万 - 项目类别:
SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
SCH:头部适应性放射治疗的个性化重新安排
- 批准号:
10397692 - 财政年份:2021
- 资助金额:
$ 32.04万 - 项目类别:
SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
SCH:头部适应性放射治疗的个性化重新安排
- 批准号:
10737817 - 财政年份:2021
- 资助金额:
$ 32.04万 - 项目类别:
Diversity Supplement: SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head and Neck Cancer
多样性补充:SCH:头颈癌适应性放射治疗的个性化重新安排
- 批准号:
10599545 - 财政年份:2021
- 资助金额:
$ 32.04万 - 项目类别:
SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
SCH:头部适应性放射治疗的个性化重新安排
- 批准号:
10628045 - 财政年份:2021
- 资助金额:
$ 32.04万 - 项目类别:
SCH: Personalized Rescheduling of Adaptive Radiation Therapy for Head & Neck Cancer
SCH:头部适应性放射治疗的个性化重新安排
- 批准号:
10737816 - 财政年份:2021
- 资助金额:
$ 32.04万 - 项目类别:
相似海外基金
Improving Pediatric Brain Injury Outcomes Through Equitable Care Implementation
通过实施公平护理改善儿童脑损伤的结果
- 批准号:
10597474 - 财政年份:2022
- 资助金额:
$ 32.04万 - 项目类别:
Characteristics of Transitions from Skilled Nursing Facility to Home Following Heart Failure Hospitalization
心力衰竭住院后从专业护理机构过渡到家庭的特点
- 批准号:
10711710 - 财政年份:2022
- 资助金额:
$ 32.04万 - 项目类别:
Acute Use of Alcohol and Attentional Bias towards Suicide: An Experimental Test of the Attention-Allocation Model.
急性酒精使用和自杀注意力偏差:注意力分配模型的实验测试。
- 批准号:
10554990 - 财政年份:2021
- 资助金额:
$ 32.04万 - 项目类别:
Advancing Rehabilitation Paradigms for Older Adults in Skilled Nursing Facilities
推进熟练护理机构中老年人的康复模式
- 批准号:
10768215 - 财政年份:2021
- 资助金额:
$ 32.04万 - 项目类别:
Diversity Supplement to FKBP51 antagonism to prevent chronic pain: optimizing efficacy & evaluating safety and mechanisms R01NS118563
FKBP51 拮抗剂的多样性补充可预防慢性疼痛:优化疗效
- 批准号:
10622997 - 财政年份:2020
- 资助金额:
$ 32.04万 - 项目类别: