Cell Intrinsic and Extrinsic Factors Driving Maturation in Human PSC-derived Neurons
驱动人 PSC 衍生神经元成熟的细胞内在和外在因素
基本信息
- 批准号:10736603
- 负责人:
- 金额:$ 65.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdoptedAdultAstrocytesAutomobile DrivingBasic ScienceBehaviorBiological AssayBiologyBirthBrainCell MaturationCellsCharacteristicsChemicalsChromatinComplexConceptionsDataDevelopmentDevelopmental ProcessDiseaseDisease modelEmbryoEpigenetic ProcessExhibitsFingerprintFutureGenesGeneticGoalsHumanHuman CharacteristicsHuman DevelopmentIn VitroIntrinsic factorLinkMeasuresMicrogliaModelingMolecularMolecular ProfilingMusNervous SystemNeurodegenerative DisordersNeurodevelopmental DisorderNeurogliaNeuronal DifferentiationNeuronsOrganoidsProcessPropertyProtocols documentationRegenerative MedicineReporterResearch PersonnelRoleStudy modelsSystemTestingTransplantationWorkXenograft procedurecell motilitycell typedifferentiation protocoldirected differentiationexcitatory neuronfetalgenetic approachhuman diseasehuman modelhuman pluripotent stem cellhuman stem cellsimprovedin utero transplantationin vivoinduced pluripotent stem cellinhibitory neuronnerve stem cellneuralneuron developmentneuropsychiatric disordernovelpharmacologicpredictive markerpreventprogramsstemstem cell differentiationstem cellsthree dimensional cell culturetimelinetool
项目摘要
Project Summary
Human embryonic (hESC) and human induced pluripotent stem cells (hiPSC) offer great promise for basic
research and for applications in disease modeling. The initial challenge for exploiting this potential was to direct
stem cell differentiation towards specific nerve cell or glial fates relevant to disease. Over the last few years, we
have developed many such protocols that now enable researchers to generate > 50 distinct human cell types in
a dish. However, a major remaining challenge is the fetal rather than adult-like features exhibited by the
resulting cells, which limits their usefulness. The reason for their immaturity is unclear but may be linked to a
cell-intrinsic, clock-like mechanism that controls the timing of maturation. While it takes 9 months for a human
baby to develop, from conception to birth, the same process takes only 20 days in a mouse. Those dramatic
timing differences are recapitulated in a dish, where the maturation of human cells may require many months
to reach adult-like properties. Interestingly, we observe such timing differences in both 2D and 3D culture
including in neural organoids. Even after transplanting human cells into the mouse brain, cells continue to
follow a human-specific maturation trajectory, despite being surrounded by an adult host microenvironment.
Here we will address this challenge by building assays to measure and quantify neuronal and glial
maturation and by developing strategies to override the intrinsic maturation clock. Towards these goals, we
have established a unique stem cell-based assay to produce nerve cells at very high precision and in a
temporally synchronized manner. The resulting cells then progressively mature from fetal to adult-like stages
over a period of several months allowing us to define markers that predict the neuronal maturation state. In Aim
1, we will build on these preliminary data and establish stage-specific “fingerprints” of nerve cell maturation to
determine maturation states at unprecedented precision. In addition, we will characterize the maturation of glial
cells (astrocytes and microglia) in a novel tri-culture system to test whether the presence of glia can improve
neuronal maturation. In Aim 2, we will apply maturation “fingerprints” as a readout for identifying factors that
can accelerate maturation timing. In preliminary studies, we have identified chemicals and genes that are
strong candidates for driving neuronal maturation. We will further validate those findings in the tri-culture
system to determine the combined effect of intrinsic and extrinsic maturation factors. Finally, we will perform
mechanistic studies to understand how those factors induce more adult-like features in human cells. In Aim3,
we will test our optimized maturation strategies in more complex 3D culture systems to assess whether
induced maturation strategies impact other developmental processes such as cell migration and organization.
Finally, we will assess whether “induced maturation” strategies can be adopted to achieve accelerated
timelines of neuronal maturation upon transplantation into the developing murine brain, a strategy that could
enable new human disease models for the study of neurodevelopmental or neuropsychiatric disorders in vivo.
项目摘要
人类胚胎(HESC)和人类诱导的多能干细胞(HIPSC)为基础提供了巨大的希望
研究和用于疾病建模中的应用。利用这种潜力的最初挑战是指导
干细胞与特定神经细胞或与疾病相关的神经胶质命运的分化。在过去的几年中,我们
已经开发了许多这样的协议,这些方案现在使研究人员能够生成> 50种不同的人类细胞类型
一道菜。但是,剩下的主要挑战是胎儿而不是像成人一样的特征
产生的细胞,这限制了它们的实用性。他们不成熟的原因尚不清楚,但可能与
控制成熟时机的细胞中心,类似时钟样的机制。虽然人类需要9个月
从概念到出生,婴儿才能在鼠标中仅需20天。那些戏剧性的
在菜肴中概括了时序差异,其中人类细胞的成熟可能需要数月
达到成人的特性。有趣的是,我们观察到2D和3D文化中的这种时间差异
包括在神经器官中。即使将人类细胞移植到小鼠大脑中后,细胞仍在继续
遵循人类特异性的成熟轨迹,目的地被成人宿主微环境所包围。
在这里,我们将通过建立测定法来解决和量化神经元和神经胶质的挑战
成熟并通过制定覆盖固有成熟时钟的策略。达到这些目标,我们
已经建立了一种独特的基于干细胞的评估,以非常高的精度和
暂时同步的方式。然后,所得细胞从胎儿到成人阶段逐渐成熟
在几个月的时间里,我们可以定义预测神经元成熟态的标记。目标
1,我们将基于这些初步数据,并建立神经细胞成熟的特定阶段的“指纹”
以前所未有的精度确定成熟状态。另外,我们将表征神经胶质的成熟
新型三培养系统中的细胞(星形胶质细胞和小胶质细胞),以测试胶质的存在是否可以改善
神经元成熟。在AIM 2中,我们将应用成熟的“指纹”作为识别因素的读数
可以加速成熟时机。在初步研究中,我们确定了化学物质和基因
强大的候选神经元成熟的候选者。我们将进一步验证三文化中的这些发现
确定固有和外在成熟因子的综合作用的系统。最后,我们将表演
机械研究以了解这些因素如何影响人类细胞中更多的成年特征。在AIM3中,
我们将在更复杂的3D培养系统中测试我们优化的成熟策略,以评估是否
诱导的成熟策略会影响其他发展过程,例如细胞迁移和组织。
最后,我们将评估是否可以采用“诱发的成熟”策略来实现加速
将神经元成熟的时间表移植到发育中的鼠大脑中,该策略可以
启用新的人类疾病模型,以研究体内神经发育或神经精神疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LORENZ P. STUDER其他文献
LORENZ P. STUDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LORENZ P. STUDER', 18)}}的其他基金
Molecular and cellular pathways driving competency for human vagal neural crest specification
驱动人类迷走神经嵴规范能力的分子和细胞途径
- 批准号:
10727766 - 财政年份:2023
- 资助金额:
$ 65.53万 - 项目类别:
Programming age in iPS models of Alzheimer's disease
阿尔茨海默病 iPS 模型中的编程年龄
- 批准号:
9904310 - 财政年份:2017
- 资助金额:
$ 65.53万 - 项目类别:
Programming age in iPS models of Alzheimer's disease
阿尔茨海默病 iPS 模型中的编程年龄
- 批准号:
9360837 - 财政年份:2017
- 资助金额:
$ 65.53万 - 项目类别:
MODELING ENTERIC NERVOUS SYSTEM DEVELOPMENT AND HIRSCHSPRUNG'S DISASE IN HUMAN PLURIPOTENT STEM CELLS
人类多能干细胞中肠神经系统发育和先天性巨结肠疾病的建模
- 批准号:
9219722 - 财政年份:2016
- 资助金额:
$ 65.53万 - 项目类别:
Tools towards the rapid derivation of glial cells from human pluripotent cells
从人类多能细胞中快速衍生出神经胶质细胞的工具
- 批准号:
8571660 - 财政年份:2013
- 资助金额:
$ 65.53万 - 项目类别:
Tools towards the rapid derivation of glial cells from human pluripotent cells
从人类多能细胞中快速衍生出神经胶质细胞的工具
- 批准号:
8665502 - 财政年份:2013
- 资助金额:
$ 65.53万 - 项目类别:
Defining fate potential in human ESC derived neural stem cells
定义人类 ESC 衍生神经干细胞的命运潜力
- 批准号:
7713919 - 财政年份:2009
- 资助金额:
$ 65.53万 - 项目类别:
Human embryonic stem cell derived midbrain dopamine neurons
人胚胎干细胞来源的中脑多巴胺神经元
- 批准号:
7561098 - 财政年份:2007
- 资助金额:
$ 65.53万 - 项目类别:
Human embryonic stem cell derived midbrain dopamine neurons
人胚胎干细胞来源的中脑多巴胺神经元
- 批准号:
7342836 - 财政年份:2007
- 资助金额:
$ 65.53万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 65.53万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 65.53万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 65.53万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 65.53万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 65.53万 - 项目类别: