Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
基本信息
- 批准号:9750105
- 负责人:
- 金额:$ 33.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-14 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:BioinformaticsBiologicalBreathingClinicalCodeCommunitiesComplexComputerized Medical RecordDNADataData SetDiseaseDisease OutcomeEtiologyEventFoundationsGene ExpressionGeneticGenetic DiseasesGenetic ModelsGenetic RiskGenetic screening methodGenetic studyGenomicsGenotypeGenotype-Tissue Expression ProjectHeritabilityHumanLinkMediatingMedicalMessenger RNAMethodsModelingModernizationNucleic Acid Regulatory SequencesOutcomePathway interactionsPhenotypeProteinsQuantitative Trait LociReportingResearch PersonnelRoleSamplingSchizophreniaSingle Nucleotide PolymorphismStatistical MethodsSystemTechnologyTestingTimeTissue-Specific Gene ExpressionTrainingVariantbasebiobankcausal variantcomputerized toolsdata miningdesigndisease phenotypedisorder riskendophenotypeepigenomicsfallsgenetic architecturegenetic variantgenome wide association studygenome-wideimprovedinsightnext generation sequencingnovelphenotypic dataprecision medicinepredictive modelingprogramsrare varianttooltraittranscriptometranscriptomics
项目摘要
Project Summary
Modern studies of the genetic architecture underlying human complex traits or diseases generally fall into three
designs of association relationship: the association between genetic variants and disease, the association
between genetic variants and expression (e.g. expression quantitative trait loci, eQTL), and the association
between gene expression and disease. Many promising findings are discovered, including thousands of single
nucleotide polymorphisms found to be associated with common diseases. While these findings provide us with
valuable insights into the genetic architecture of common diseases and the shared heritability among diseases,
what missing are the mechanisms, including the exact causal variants, the direction of their effects, and the
orders of events, which forms the foundational hypothesis that we would like to solve through the studies in this
proposal. With the inspiration of many recent discoveries that a substantial fraction of the disease-associated
genetic variants is located in regulatory regions, in this proposal, we combine bioinformatics, statistical
genetics, precision medicine, and phenotype and electronic medical record (EMR) data mining to develop
novel analytical strategies that maximally leverage regulatory information from both genotype and expression,
aiming to predict phenotype using transcriptomic alteration with DNA variation. We propose the following three
major aims. (1) To build a unified genetic model for the prediction of phenotype by combining genetic and
transcriptomic associations. Functional and regulatory annotation data generated from the ENCODE,
FANTOM5, GENCODE, the Epigenomic Roadmap, and GTEx will be effectively incorporated to infer an
important endophenotype, the genetically determined expression component, for better prediction of
phenotype or disease outcome. (2) To develop a maximum likelihood based link test and a phenotype-specific
regulatory network approach to resolve genotype-phenotype causality relationships mediated by gene
expression. (3) To extensively evaluate the approaches in schizophrenia and apply them to broad phenotypes
using the Vanderbilt biobank (BioVU) genotype and linked electronic medical data. Building on our previous
studies and strong preliminary data, this proposal is timely for studying the genetic architecture in human
complex diseases and traits by dissecting the genetic components contributed from regulatory roles of variants
at the gene expression level. It is highly significant because it tackles the strong limitations in numerous
genome-wide association studies (GWAS) and next-generation sequencing (NGS) for inferring causality and
translational potentials in the emerging fields of precision medicine. The successful completion of this project
will not only advance our understanding of genetic components in schizophrenia and a broad spectrum of
phenotypes or clinical outcomes, but also provide useful methods and tools to the public community for
studying genetic architecture of phenotype via the linkage of genomic and medical information.
项目概要
现代对人类复杂特征或疾病的遗传结构的研究通常分为三类
关联关系的设计:遗传变异与疾病之间的关联、关联
遗传变异和表达之间(例如表达数量性状位点,eQTL)以及关联
基因表达与疾病之间的关系。发现了许多有希望的发现,包括数千个单一的
发现核苷酸多态性与常见疾病相关。虽然这些发现为我们提供了
对常见疾病的遗传结构和疾病之间的共同遗传性的宝贵见解,
缺少的是机制,包括确切的因果变异、其影响的方向以及
事件的顺序,这构成了我们希望通过本研究解决的基本假设
提议。受许多最近发现的启发,很大一部分与疾病相关的疾病
遗传变异位于调控区域,在这个提案中,我们结合生物信息学、统计学
遗传学、精准医学、表型和电子病历 (EMR) 数据挖掘以开发
最大限度地利用来自基因型和表达的监管信息的新颖分析策略,
旨在利用 DNA 变异的转录组改变来预测表型。我们建议以下三点
主要目标。 (1)将遗传与表型相结合,建立统一的遗传模型来预测表型。
转录组关联。从 ENCODE 生成的功能和监管注释数据,
FANTOM5、GENCODE、表观基因组路线图和 GTEx 将有效地结合起来,以推断
重要的内表型,基因决定的表达成分,用于更好地预测
表型或疾病结果。 (2) 开发基于最大似然的链接测试和表型特异性
解决基因介导的基因型-表型因果关系的调控网络方法
表达。 (3) 广泛评估精神分裂症的治疗方法并将其应用于广泛的表型
使用范德比尔特生物库 (BioVU) 基因型和链接的电子医疗数据。建立在我们之前的基础上
研究和强有力的初步数据,该提案对于研究人类遗传结构来说是及时的
通过剖析变异体的调控作用所贡献的遗传成分来研究复杂的疾病和性状
在基因表达水平上。它非常重要,因为它解决了许多方面的严重限制
用于推断因果关系的全基因组关联研究(GWAS)和下一代测序(NGS)
精准医学新兴领域的转化潜力。本项目的顺利完成
不仅会增进我们对精神分裂症遗传成分和广泛疾病的理解
表型或临床结果,同时也为公众提供有用的方法和工具
通过基因组和医学信息的联系研究表型的遗传结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Zhao其他文献
Zhongming Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Zhao', 18)}}的其他基金
Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease
构建阿尔茨海默病逆转录转座子转录组图谱
- 批准号:
10431366 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别:
Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
- 批准号:
9764346 - 财政年份:2018
- 资助金额:
$ 33.69万 - 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
- 批准号:
10842954 - 财政年份:2017
- 资助金额:
$ 33.69万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10318084 - 财政年份:2017
- 资助金额:
$ 33.69万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9980998 - 财政年份:2017
- 资助金额:
$ 33.69万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10640868 - 财政年份:2017
- 资助金额:
$ 33.69万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10449376 - 财政年份:2017
- 资助金额:
$ 33.69万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9093087 - 财政年份:2016
- 资助金额:
$ 33.69万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9329385 - 财政年份:2016
- 资助金额:
$ 33.69万 - 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
- 批准号:
9212507 - 财政年份:2016
- 资助金额:
$ 33.69万 - 项目类别:
相似国自然基金
微塑料积累对玉米根际土壤呼吸的影响及其微生物机制
- 批准号:42307420
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超细颗粒物与臭氧复合暴露下宿主微生物组对呼吸系统炎症反应的调控机制研究
- 批准号:22376033
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
一种用于生物呼吸标记物检测的中红外全固态超短脉冲激光器的研究
- 批准号:62305188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CT组学预测呼吸道传染性重症病毒肺炎的生物学机制研究
- 批准号:82302335
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物结皮双向调控旱区土壤呼吸的动态模式与形成机制
- 批准号:32371723
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Spatiotemporal Atlas of Cellular Networks and Ultrastructural States Mediating the Progression and Resolution of Pulmonary Fibrosis
介导肺纤维化进展和消退的细胞网络和超微结构状态的时空图谱
- 批准号:
10600647 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Discovery and characterization of synthetic bioinformatic natural product anticancer agents
合成生物信息天然产物抗癌剂的发现和表征
- 批准号:
10639302 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Biosynthesis of Several Oxyvinylglycine Nonproteinogenic Amino Acids Bearing Unusual Alkoxyamine Bonds
几种带有异常烷氧基胺键的氧乙烯甘氨酸非蛋白氨基酸的生物合成
- 批准号:
10752052 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Integrative Multidisciplinary Discovery Platform to Unlock Marine Natural Products Therapeutic Opportunities
综合多学科发现平台释放海洋天然产品治疗机会
- 批准号:
10413304 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别:
Investigating the role of brainstem neuroinflammation in cardiorespiratory control in a rat model of recurrent epilepsy
研究脑干神经炎症在复发性癫痫大鼠模型心肺控制中的作用
- 批准号:
10676746 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别: