Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
基本信息
- 批准号:10449376
- 负责人:
- 金额:$ 31.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-14 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAutomobile DrivingBioinformaticsBiologicalBrain DiseasesCell physiologyCellsCodeCommunitiesComplexComputerized Medical RecordComputing MethodologiesDNADataData ScienceData SetDatabasesDevelopmentDimensionsDiseaseElementsEnvironmental Risk FactorEpigenetic ProcessGene ExpressionGenesGeneticGenetic TranscriptionGenetic studyGenomeGenomicsGenotypeGenotype-Tissue Expression ProjectHumanHuman GenomeIndividualInformaticsLinkMapsMedical InformaticsMessenger RNAMethodsMiningMultiomic DataNeurodegenerative DisordersNeurodevelopmental DisorderOther GeneticsPhenotypePlayPopulationProteinsRegulationReportingResearchResearch PersonnelResolutionRoleSamplingSignal TransductionSingle Nucleotide PolymorphismStatistical MethodsTechnologyTimeTissue-Specific Gene ExpressionTissuesUntranslated RNAVariantbasebiobankcell typecohortcomputerized toolsdata miningdeep learningdisease phenotypedisorder riskepigenomicsfunctional genomicsgene environment interactiongene interactiongenetic architecturegenetic variantgenome wide association studygenome-wideheterogenous datahuman studyinnovationlearning strategyneural networkneuropsychiatric disordernovelprogramssingle cell sequencingsingle-cell RNA sequencingspatiotemporaltraittranscriptomeweb server
项目摘要
Project Summary
Complex disease and traits are caused by dynamic genetic regulation and environmental interactions.
Numerous genetic, genomic, and phenotypic datasets have been generated, including genotypes, gene
expression, epigenetic changes, and electronic medical records (EMRs). Currently, there is main challenge on
development of novel informatic approaches to effectively link phenotype with genomic information.
Specifically, genome-wide association studies (GWAS) have reported several thousand single nucleotide
polymorphisms (SNPs) that are significantly associated with the disease and traits; however, more than 80% of
them are noncoding variants, making it difficult to interpret their potential disease-causal roles. We and others
have systematically examined how phenotypic variability in disease risk for a broad spectrum of disease
phenotypes can be explained by regulatory variants. Now, we hypothesize that such regulation will be in a
tissue-specific, cell type-specific and developmental stage-specific (TCD-specific) manner. Importantly, large
genomic consortia, like ENCODE, FANTOM5, the Roadmap Epigenomics, and GTEx have continuously
generated high-quality functional data for annotating genome-wide variants. The emerging single-cell
sequencing technologies have enabled us to examine how genetic variants affect cellular functions within
individual cells or specific cell types. This brings us an unprecedented opportunity to develop novel statistical
and computational approaches for deep understanding of the genetic architecture of phenotype. In this
proposal, we combine bioinformatics, single cell omics, deep learning, and phenotype and EMR data mining to
develop novel analytical strategies that maximally leverage information from both genotype and expression
from massive heterogeneous data, aiming to predict phenotype by functional assessment of DNA variation at
the TCD-specific levels. We propose the following three specific aims. (1) To develop a deep learning method
for variant impact predictor, DeepVIP, that maximally utilizes functional and regulatory data to predict the
causal roles of variants in complex disease and traits. (2) To develop phenotype-specific network approaches
to resolve genotype-phenotype relationships in the spatiotemporal manner and single-cell resolution. We will
develop a novel method, single cell dense module search of GWAS signals (scGWAS) and also a graphical
neural network approach, GNN-scTP, to detect driving roles of genes from single cell RNA-seq data. These
methods can effectively identify critical regulatory modules and genes in complex disease in the TCD-specific
manner. (3) To apply the methods to 16 neurodevelopmental and neurodegenerative disorders and related
traits, as well as broad phenotypes using Vanderbilt biobank (BioVU) and UK Biobank data – both have
genotypes linked with rich phenotypic information. Our proposal is timely and innovative to study the genetic
architecture in human complex diseases and traits by dissecting important genetic components, especially
noncoding variants, at the functional, regulatory, spatial, temporal, and single cell levels.
项目概要
复杂的疾病和性状是由动态遗传调控和环境相互作用引起的。
已经生成了大量的遗传、基因组和表型数据集,包括基因型、基因
目前,主要挑战在于表达、表观遗传变化和电子病历(EMR)。
开发新的信息学方法以有效地将表型与基因组信息联系起来。
具体来说,全基因组关联研究(GWAS)已报告了数千个单核苷酸
然而,超过 80% 的多态性 (SNP) 与疾病和性状显着相关;
它们是非编码变异,因此很难解释它们潜在的致病作用。
系统地研究了多种疾病的疾病风险表型变异如何
表型可以通过调控变异来解释。现在,我们认为这种调控将在一个过程中进行。
组织特异性、细胞类型特异性和发育阶段特异性(TCD 特异性)方式。
基因组联盟,如 ENCODE、FANTOM5、Roadmap Epigenomics 和 GTEx 不断
生成了用于注释新兴单细胞变异的高质量功能数据。
测序技术使我们能够检查遗传变异如何影响细胞功能
单个细胞或特定细胞类型给我们带来了前所未有的机会来开发新的统计数据。
和计算方法来深入理解表型的遗传结构。
建议,我们将生物信息学、单细胞组学、深度学习、表型和 EMR 数据挖掘结合起来
开发新颖的分析策略,最大限度地利用基因型和表达的信息
来自大量异质数据,旨在通过 DNA 变异的功能评估来预测表型
我们提出以下三个具体目标: (1) 开发深度学习方法。
对于变异影响预测器 DeepVIP,它最大限度地利用功能和监管数据来预测
(2) 开发表型特异性网络方法
以时空方式和单细胞分辨率解决基因型-表型关系。
开发一种新方法,GWAS 信号的单细胞密集模块搜索(scGWAS)以及图形化
神经网络方法 GNN-scTP,用于检测单细胞 RNA-seq 数据中基因的驱动作用。
方法可以有效地识别 TCD 特异性复杂疾病中的关键调控模块和基因
(3)将该方法应用于16种神经发育和神经退行性疾病及相关疾病。
性状以及使用范德比尔特生物库 (BioVU) 和英国生物库数据的广泛表型 - 两者都具有
我们的建议对于研究遗传来说是及时且创新的。
通过剖析重要的遗传成分,尤其是人类复杂疾病和特征的结构
非编码变异,在功能、调节、空间、时间和单细胞水平上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Zhao其他文献
Zhongming Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Zhao', 18)}}的其他基金
Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease
构建阿尔茨海默病逆转录转座子转录组图谱
- 批准号:
10431366 - 财政年份:2022
- 资助金额:
$ 31.86万 - 项目类别:
Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
- 批准号:
9764346 - 财政年份:2018
- 资助金额:
$ 31.86万 - 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
- 批准号:
10842954 - 财政年份:2017
- 资助金额:
$ 31.86万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10318084 - 财政年份:2017
- 资助金额:
$ 31.86万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9750105 - 财政年份:2017
- 资助金额:
$ 31.86万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9980998 - 财政年份:2017
- 资助金额:
$ 31.86万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10640868 - 财政年份:2017
- 资助金额:
$ 31.86万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9093087 - 财政年份:2016
- 资助金额:
$ 31.86万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9329385 - 财政年份:2016
- 资助金额:
$ 31.86万 - 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
- 批准号:
9212507 - 财政年份:2016
- 资助金额:
$ 31.86万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别:
Screening using split fluorescent protein tags for neurotransmitter receptors that define a synaptic balance in neuralcircuits
使用分裂荧光蛋白标签筛选神经递质受体,定义神经回路中的突触平衡
- 批准号:
10805112 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别:
Multispectral Imaging of Neurons and Astrocytes: Revealing Spatiotemporal Organelle Phenotypes in Health and Neurodegeneration
神经元和星形胶质细胞的多光谱成像:揭示健康和神经退行性疾病中的时空细胞器表型
- 批准号:
10674346 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别:
A mechanistic understanding of glymphatic transport and its implications in neurodegenerative disease
对类淋巴运输的机制及其在神经退行性疾病中的影响的理解
- 批准号:
10742654 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别: