Plant Nutrient-Growth Signaling Network
植物养分生长信号网络
基本信息
- 批准号:10734306
- 负责人:
- 金额:$ 40.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgricultureAmino AcidsAnimal DiseasesAnimalsArabidopsisArchitectureBiochemicalBiologyBiomassCalmodulinCarbonCell NucleusComplexCoupledCouplingCytoplasmDevelopmentDevelopmental ProcessEcosystemEnvironmental ProtectionGene ExpressionGene Expression RegulationGenesGeneticGenetic ScreeningGenetic TranscriptionGenomicsGoalsGrowthGrowth FactorHealthHumanKnowledgeLateralLifeLinkLongevityMediatingMetabolicMetabolismMethodologyMolecularMouse-ear CressNitratesNitrogenNoduleNucleic AcidsNutrientOrganOrganismPhosphorylationPhosphotransferasesPhysiologicalPlanetsPlant RootsPlant ShootsPlantsPlayProductivityProtein KinaseProteinsRegulationReiterated GenesResearchResearch Project GrantsRoleShapesSignal TransductionSignaling MoleculeSirolimusSomatotropinSubgroupSystemSystems AnalysisTranscription CoactivatorTranscriptional RegulationTransducersTransgenic Organismsbiological systemschemical geneticscombinatorialexperimental studyfunctional genomicsgenetic analysisgenome-wideinnovationmutantnovelnutritionorgan growthplant growth/developmentprogramsprotein complexresponsesensorsuccesstranscription factortranscriptional reprogrammingtranscriptome
项目摘要
Nutrient signaling integrates and coordinates gene expression, metabolism, and growth. In
multicellular organisms, growth factors and hormones are ineffective in growth promotion without
the support of nutrient signaling networks. However, surprisingly little is known about the primary
nutrient signaling mechanisms in plants and animals. Plants play a central role in bridging the
conversion of inorganic nitrogen to organic nitrogen in the global nitrogen cycle by assimilating
inorganic nitrate to generate amino acids, nucleic acids, and organic nitrogen-carbon molecules,
which are essential to build and sustain lives from plants to humans. Despite the fundamental and
multifaceted regulatory roles of nitrate in gene expression, metabolism, growth, and development,
the molecular and cellular mechanisms of nitrate signaling remain largely elusive in multicellular
plants. Hampered by gene redundancy and mutant lethality, classical genetic screens had limited
success in identifying key nitrate signaling components in plants over the past two decades. By
taking integrated molecular, cellular, biochemical, functional genomic, chemical genetic, and
systems analyses, we have discovered a surprising molecular link between specific Ca2+-sensor
protein kinases (CPKs) and the NODULE INCEPTION-LIKE PROTEIN (NLP) transcription factors
as the primary regulators of the nitrate-signaling network in plants. Our research has demonstrated
the unique role of nitrate as a central signaling molecule in transcriptome reprogramming and
shoot-root coordination to shape organ biomass and architecture. We also recently discovered the
first plant nitrate sensor NLP7 with a dual function as a transcription activator, and the combinatorial
actions of multiple NLPs in controlling the primary nitrate responses (PNR) central to coordinate
plant root and shoot development. We propose to build on our new findings and innovative
experimental platforms to elucidate the molecular and cellular basis of the nutrient-growth network
that orchestrates system-wide transcription and modulates plant developmental processes. We will
integrate complementary strategies and methodologies to advance our understanding of nutrient
signaling mechanisms for three specific aims:
Aim1. Elucidate the function and action of the NLP7 nitrate sensor complex
Aim 2. Dissect the intracellular Ca2+ signaling mechanism triggered by nitrate
Aim 3. Uncover the CPK-TOR link in nitrate signaling
The proposed research to unravel the nitrate signaling mechanisms will establish new paradigms in
the action of nutrient sensor complexes, nutrient-mediated Ca2+ signaling, as well as transcriptional
and developmental regulation with sustained scientific impact beyond plant biology.
营养信号整合并协调基因表达、代谢和生长。在
如果没有多细胞生物、生长因子和激素,则无法有效促进生长。
营养信号网络的支持。然而,令人惊讶的是,人们对主要因素知之甚少。
植物和动物的营养信号传导机制。植物在桥梁中发挥着核心作用
在全球氮循环中,通过同化作用将无机氮转化为有机氮
无机硝酸盐生成氨基酸、核酸和有机氮碳分子,
这对于建立和维持从植物到人类的生命至关重要。尽管有基本和
硝酸盐在基因表达、代谢、生长和发育中的多方面调节作用,
硝酸盐信号传导的分子和细胞机制在多细胞中仍然很大程度上难以捉摸
植物。由于基因冗余和突变致死率的阻碍,经典的遗传筛选受到限制
过去二十年成功鉴定了植物中关键的硝酸盐信号成分。经过
综合分子、细胞、生物化学、功能基因组、化学遗传学和
通过系统分析,我们发现了特定 Ca2+-传感器之间令人惊讶的分子联系
蛋白激酶 (CPK) 和结节起始样蛋白 (NLP) 转录因子
作为植物硝酸盐信号网络的主要调节剂。我们的研究表明
硝酸盐作为转录组重编程中的中心信号分子的独特作用
茎-根协调塑造器官生物量和结构。我们最近还发现了
第一个具有转录激活剂双重功能的植物硝酸盐传感器 NLP7,以及组合
多个 NLP 在控制初级硝酸盐反应 (PNR) 中的作用,以协调为中心
植物根和芽的发育。我们建议以我们的新发现和创新为基础
阐明营养生长网络的分子和细胞基础的实验平台
协调全系统转录并调节植物发育过程。我们将
整合互补的策略和方法来增进我们对营养素的理解
实现三个特定目标的信号机制:
目标1。阐明 NLP7 硝酸盐传感器复合物的功能和作用
目标 2. 剖析硝酸盐触发的细胞内 Ca2+ 信号传导机制
目标 3. 揭示硝酸盐信号传导中的 CPK-TOR 链接
拟议的揭示硝酸盐信号机制的研究将在以下方面建立新的范式
营养传感器复合物的作用、营养介导的 Ca2+ 信号传导以及转录
以及对植物生物学之外具有持续科学影响的发育调控。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Glucose-driven TOR-FIE-PRC2 signalling controls plant development.
- DOI:10.1038/s41586-022-05171-5
- 发表时间:2022-09
- 期刊:
- 影响因子:64.8
- 作者:Ye, Ruiqiang;Wang, Meiyue;Du, Hao;Chhajed, Shweta;Koh, Jin;Liu, Kun-hsiang;Shin, Jinwoo;Wu, Yue;Shi, Lin;Xu, Lin;Chen, Sixue;Zhang, Yijing;Sheen, Jen
- 通讯作者:Sheen, Jen
Dynamic Nutrient Signaling Networks in Plants.
- DOI:10.1146/annurev-cellbio-010521-015047
- 发表时间:2021-10-06
- 期刊:
- 影响因子:11.3
- 作者:Li L;Liu KH;Sheen J
- 通讯作者:Sheen J
Integration of nutrient, energy, light, and hormone signalling via TOR in plants.
- DOI:10.1093/jxb/erz028
- 发表时间:2019-02
- 期刊:
- 影响因子:6.9
- 作者:Yue Wu;Lin Shi;Lei Li;Liwen Fu;Yanlin Liu;Yan Xiong;J. Sheen
- 通讯作者:Yue Wu;Lin Shi;Lei Li;Liwen Fu;Yanlin Liu;Yan Xiong;J. Sheen
Model-driven discovery of calcium-related protein-phosphatase inhibition in plant guard cell signaling
- DOI:10.1371/journal.pcbi.1007429
- 发表时间:2019-10-01
- 期刊:
- 影响因子:4.3
- 作者:Maheshwari, Parul;Du, Hao;Albert, Reka
- 通讯作者:Albert, Reka
NIN-like protein 7 transcription factor is a plant nitrate sensor.
NIN 样蛋白 7 转录因子是植物硝酸盐传感器
- DOI:10.1126/science.add1104
- 发表时间:2022-09-23
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEN SHEEN其他文献
JEN SHEEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEN SHEEN', 18)}}的其他基金
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Activation of immune receptor signaling by a sulfated peptide
硫酸化肽激活免疫受体信号传导
- 批准号:
9912789 - 财政年份:2017
- 资助金额:
$ 40.42万 - 项目类别:
Mechanism of RVFV nucleocapsid targeting drugs
RVFV核衣壳靶向药物作用机制
- 批准号:
8626532 - 财政年份:2014
- 资助金额:
$ 40.42万 - 项目类别:
Small molecule signaling in Caenorhabditis elegans
秀丽隐杆线虫中的小分子信号传导
- 批准号:
9102155 - 财政年份:2010
- 资助金额:
$ 40.42万 - 项目类别: