Protein Arginine Methylation in Vascular Smooth Muscle Cell Phenotypic Modulation and Calcification
血管平滑肌细胞表型调节和钙化中的蛋白质精氨酸甲基化
基本信息
- 批准号:10734531
- 负责人:
- 金额:$ 71.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgingAortaApolipoprotein EArginineArterial Fatty StreakAtherosclerosisBlood VesselsCalciumCardiovascular systemCellsChIP-seqChronic Kidney FailureClinical ResearchComplexDNA BindingDepositionDevelopmentDiabetes MellitusDietDiseaseDown-RegulationElasticityGenesGenetic TranscriptionHealthHomeostasisHumanIn VitroKidney DiseasesLinkLipidsMalignant NeoplasmsMediatingMethylationMolecularMorbidity - disease rateMusOxidative Stress InductionPathogenesisPathologicPathologic ProcessesPhenotypePlayProtein-Arginine N-MethyltransferaseProteinsProteomicsRegulationRoleSerum Response FactorSignal TransductionSmooth Muscle MyocytesTestingTransgenic MiceTransgenic OrganismsUp-RegulationVascular DiseasesVascular Smooth MuscleVascular Smooth Muscle TissueVascular calcificationacute myeloid leukemia 1 proteinarterial stiffnessbonecalcificationdesignexperimental studygain of functionhuman tissueimprovedin vivoloss of functionmortalitymouse modelmultiple omicsmyocardinnovelosteogenicprotein arginine methyltransferase 2single-cell RNA sequencingtherapy developmenttranscription factortranscriptomics
项目摘要
Abstract
Vascular calcification in blood vessels, stiffens artery and predicts adverse cardiovascular mortality and
morbidity. No therapies developed so far directly targeting vascular calcification. Strong evidence has now
determined the osteogenic differentiation of vascular smooth muscle cells (VSMC) into “bone-like” cells is critical
for the development of vascular calcification. We and others have demonstrated SMC-derived Runx2 (Runt-
related transcriptional factor 2) is essential in regulating osteogenic differentiation of VSMC, which induces
vascular calcification in atherosclerosis, diabetes and kidney disease. Using single cell RNA sequencing
(scRNA-seq) analysis, we discovered a novel Runx2 suppressor and its impact on SMC phenotypic switch in
atherosclerosis. Specifically, we determined that the protein arginine methyltransferase 1 (PRMT1) plays a
critical role in inhibiting Runx2 and modulating SMC phenotypic switch. PRMT1 is an emerging regulator in
human pathological processes, however, its function in vascular calcification and atherosclerosis is entirely
unknown. It is thus incumbent upon us to provide additional evidence as to how PRMT1 acts as a new Runx2
suppressor in the modulation of vascular phenotypic switch and calcification. Prompted by the intriguing
observations of an inverse correlation between upregulation of Runx2 and marked downregulation of PRMT1 in
the calcified atherosclerotic lesions in human and mice, we carried out functional studies using the PRMT1 gain-
and loss-of-function VSMC and our novel SMC-specific PRMT1 transgenic mice. Our preliminary studies
demonstrated a causative role of PRMT1 in regulating Runx2, SMC phenotypic switch and calcification in vitro;
and SMC-specific transgenic PRMT1 inhibited aortic Runx2 and the development of atherosclerosis in vivo in
the ApoE-/- mice. Further evidence implicates that PRMT1-directed regulation of Runx2 is mediated through
methylation of Runx2. Unbiased proteomics analysis of Runx2 interactome uncovered the interaction of Runx2
with serum response factor (SRF), an essential transcriptional regulator for contractile SMC marker genes, which
dysregulates SRF-dependent expression of SMC marker genes. Based on these new and exciting findings, we
hypothesize that PRMT1 is a key Runx2 suppressor, which regulates VSMC Runx2 and governs VSMC
phenotypic switch and calcification in atherosclerosis. Utilizing the new SMC-specific PRMT1 transgenic
mouse model and comprehensive multi-Omics approaches, the proposal will uncover a novel regulatory
paradigm highlighting the PRMT1/Runx2 signaling axis in modulating VSMC phenotypic switch and calcification.
抽象的
血管中的血管计算,使伪影僵硬并预测不良心血管死亡率和
发病率。到目前为止,没有疗法直接靶向血管钙化。现在有强有力的证据
确定血管平滑肌细胞(VSMC)到“骨状”细胞中的成骨分化是关键的
为了开发血管计算。我们和其他人展示了SMC衍生的Runx2(Runt-
相关的转录因子2)对于控制VSMC的成骨分化至关重要,VSMC诱导了VSMC的成骨分化。
动脉粥样硬化,糖尿病和肾脏疾病的血管钙化。使用单细胞RNA测序
(SCRNA-SEQ)分析,我们发现了一种新型的Runx2抑制器及其对SMC表型开关的影响
动脉粥样硬化。具体而言,我们确定蛋白精氨酸甲基转移酶1(PRMT1)扮演
在抑制RUNX2和调节SMC表型开关中的关键作用。 PRMT1是一个新兴的调节器
然而,人类病理过程在血管钙化和动脉粥样硬化中的功能完全是
未知。因此,我们有责任提供有关PRMT1如何充当新Runx2的其他证据
血管表型开关和钙化调节中的抑制剂。引人入胜
观察Runx2上调与PRMT1在中的下调之间的反相关性观察
计算出的人和小鼠的动脉粥样硬化病变,我们使用PRMT1增益进行了功能研究
以及功能丧失VSMC和我们的新型SMC特异性PRMT1转基因小鼠。我们的初步研究
在体外,PRMT1在调节中表现出了pRMT1的致病作用;
SMC特异性转基因PRMT1抑制了主动脉runx2和体内动脉粥样硬化的发展
apoe - / - 小鼠。进一步的证据表明,PRMT1指导的RUNX2调节是通过
Runx2的甲基化。 Runx2的无偏蛋白质组学分析相互作用揭示了Runx2的相互作用
血清反应因子(SRF),这是收缩SMC标记基因的基本转录调节剂,该调节因子
SMC标记基因的SRF依赖性表达失调。基于这些新的令人兴奋的发现,我们
假设PRMT1是一个键Runx2抑制器,它调节VSMC Runx2并控制VSMC
动脉粥样硬化中的表型转换和钙化。利用新的SMC特异性PRMT1转基因
鼠标模型和全面的多词方法,该提案将发现一种新颖的调节
在调节VSMC表型开关和钙化时突出显示PRMT1/RUNX2信号轴的范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yabing Chen其他文献
Yabing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yabing Chen', 18)}}的其他基金
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
10421252 - 财政年份:2019
- 资助金额:
$ 71.4万 - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
9775753 - 财政年份:2019
- 资助金额:
$ 71.4万 - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
10044410 - 财政年份:2019
- 资助金额:
$ 71.4万 - 项目类别:
Molecular Regulation of Vascular Calcification in Diabetes
糖尿病血管钙化的分子调控
- 批准号:
10515670 - 财政年份:2019
- 资助金额:
$ 71.4万 - 项目类别:
Regulation of vascular smooth muscle cell function in atherosclerosis
动脉粥样硬化中血管平滑肌细胞功能的调节
- 批准号:
9401283 - 财政年份:2017
- 资助金额:
$ 71.4万 - 项目类别:
O-GlcNAcylation regulates vascular smooth muscle cells in diabetic vasculopathy
O-GlcNAc 酰化调节糖尿病血管病变中的血管平滑肌细胞
- 批准号:
9211306 - 财政年份:2014
- 资助金额:
$ 71.4万 - 项目类别:
相似国自然基金
ANGPTL4促进血管平滑肌细胞衰老对急性Stanford A型主动脉夹层的作用及其机制
- 批准号:82371582
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
金属硫蛋白MT3通过锌稳态促进GPX4表达抑制平滑肌细胞铁死亡和主动脉夹层的机制研究
- 批准号:82300551
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SEPT2巯基亚硝基化修饰调控巨噬细胞活化参与主动脉夹层的机制研究
- 批准号:82370491
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
二叶式主动脉瓣人群经导管主动脉瓣置换术后瓣周漏的风险因素分析及生物力学机理研究
- 批准号:82370375
- 批准年份:2023
- 资助金额:60 万元
- 项目类别:面上项目
二甲基化促进棕榈酰化修饰调控DPP4蛋白酶活性在主动脉瓣钙化中的作用及机制研究
- 批准号:82370379
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Endothelial Cell to Mesenchymal Cell Transitions Play a Critical Biological Sex- and Aging-Dependent Role in Formation and Maintenance of the Acta2+ Atherosclerotic Lesion Protective Fibrous Cap
内皮细胞向间充质细胞的转变在 Acta2 动脉粥样硬化病变保护性纤维帽的形成和维持中发挥着关键的生物性别和衰老依赖性作用
- 批准号:
10542427 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
Quantitative cerebral blood vessel imaging biomarkers for AD and VCID
AD 和 VCID 的定量脑血管成像生物标志物
- 批准号:
10214060 - 财政年份:2021
- 资助金额:
$ 71.4万 - 项目类别:
Telomerase Reverse Transcriptase in Vascular Homeostasis
端粒酶逆转录酶在血管稳态中的作用
- 批准号:
10619665 - 财政年份:2020
- 资助金额:
$ 71.4万 - 项目类别:
Telomerase Reverse Transcriptase in Vascular Homeostasis
端粒酶逆转录酶在血管稳态中的作用
- 批准号:
10412985 - 财政年份:2020
- 资助金额:
$ 71.4万 - 项目类别: