Telomerase Reverse Transcriptase in Vascular Homeostasis
端粒酶逆转录酶在血管稳态中的作用
基本信息
- 批准号:10412985
- 负责人:
- 金额:$ 59.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-06 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgingAnimalsAortaAortic SegmentApolipoprotein EArteriesAtherosclerosisBindingBlood VesselsBlood flowCell Culture TechniquesCell NucleusCell surfaceCellsConfocal MicroscopyCre lox recombination systemDataDependenceDepositionDescending aortaElementsEndothelial CellsEndotheliumExcisionExhibitsExposure toGenesGeneticGenetic TranscriptionGenomeGlucoseHomeostasisHumanImmunofluorescence ImmunologicIn SituInflammationKnock-outKnowledgeLengthLeukocyte TraffickingLinkLipidsLiquid substanceMapsMedicineMetabolismMitochondriaModelingMorbidity - disease rateMorphologyMusNetwork-basedNuclearPathway interactionsPeroxisome ProliferatorsPhenotypePhysiologicalPlayPreventionPrevention therapyProteinsRNA-Directed DNA PolymeraseRoleSignal TransductionSolidStimulusTamoxifenTelomeraseTestingThrombosisTransgenic MiceUp-RegulationVascular DiseasesVascular EndotheliumWorkaortic archbiological adaptation to stressdesignexperienceexperimental studyfatty acid oxidationimprovedin vivoinsightloss of functionmonolayermortalitynotch proteinnovel therapeuticsoverexpressionpreservationpreventresponseshear stresssingle-cell RNA sequencingtelomeretherapy designtranscriptome sequencing
项目摘要
The vascular endothelium plays an essential role in coordinating diverse circulatory
functions such as blood flow, thrombosis, leukocyte trafficking, and even metabolism. Normal
endothelial function is characterized by a quiescent cell phenotype that is non-proliferative,
non-migratory, and exhibits a cell surface that prevents thrombosis, inflammation, and lipid
deposition, thereby resisting atherosclerosis and vascular disease. A key stabilizing
stimulus for endothelial quiescence is laminar fluid shear stress (FSS) on the cell
surface that is a feature of straight vascular segments. In contrast, curved and
branching arteries experience chaotic FSS, called disturbed flow, that dictates a less
stable, activated, endothelial phenotype that is more susceptible to atherosclerosis. The
mechanisms governing endothelial phenotype in response to fluid shear stress are
incompletely understood. In this application, we present data that peroxisome proliferator
gamma coactivator-1α (PGC1α), is a fluid shear stress-responsive factor in endothelium that is
upregulated with laminar, but not oscillatory FSS. Upregulation of PGC1α is important for the
activation of key pathways linked to normal vascular homeostasis such as Klf2, Notch, and
eNOS that promote a stable anti-atherosclerotic endothelial phenotype. Exciting pilot data
links this effect to upregulation of telomerase reverse transcriptase (TERT) and its
extra-nuclear, telomere length-independent, function to stabilize maintain
mitochondrial homeostasis in response to laminar FSS. Endothelium lacking TERT activity
shows mitochondrial fragmentation and fails to align with flow, a key function needed
to resist atherosclerosis. Collectively, these data prompt our central hypothesis that
endothelial PGC1α-TERT signaling is required for endothelial and vascular adaptation to
shear and normal vascular homeostasis. To investigate this hypothesis, we propose to first
determine how PGC1α influences endothelial responses to FSS in vivo using a
tamoxifen-inducible Cre/Lox system producing endothelial specific PGC1α-gene excision, in
situ confocal microscopy, single-cell RNA-seq, Network Medicine, and the ApoE-/- atherosclerosis
model. Similarly, we will use the same strategy with inducible endothelial TERT gene excision.
Finally, using cell culture of cells lacking either PGC1α or TERT, we will dissect the
mechanisms whereby PGC1α-TERT signaling impacts endothelial FSS responsiveness with a
particular focus on FSS-induced PGC1α genome occupancy, mitochondrial and cellular metabolism,
endothelial cell flow alignment, and TERT localization to the nucleus vs. mitochondria.
Collectively, these studies will provide insight into a new paradigm of endothelial cell
responsiveness to FSS and the requirements to maintain a quiescent endothelial monolayer that
resists vascular disease. With this information, we should have the requisite insight to design new
therapies to alleviate morbidity and mortality from vascular disease.
血管内皮在协调潜水电路中起着至关重要的作用
血流,血栓形成,白细胞运输甚至代谢等功能。普通的
内皮功能的特征是静态细胞表型,该表型未增殖,
非移民,并表现出可防止血栓形成,注射和脂质的细胞表面
沉积,从而抵抗动脉粥样硬化和血管疾病。钥匙稳定
内皮静止的刺激是细胞上的层流流体剪应力(FSS)
表面是直血段的特征。相反,弯曲和
分支动脉经历混乱的FSS,称为干扰流动,这决定了较少的
稳定,激活,内皮表型,更容易受到动脉粥样硬化的影响。这
响应液体剪切应力的内皮表型的机制是
不完全理解。在此应用程序中,我们介绍了过氧化物组增殖物的数据
伽马共激活剂1α(PGC1α)是内皮中的流体剪切应力响应因子,
用层流上调,但没有振荡的FSS。 PGC1α的上调对于
与正常血管稳态有关的关键途径的激活,例如KLF2,Notch和
促进稳定的抗动物性内皮表型的eNOS。令人兴奋的飞行员数据
将此效果与端粒酶逆转录酶(TERT)及其的上调联系起来
核外,端粒长度无关,稳定维护的功能
线粒体稳态应对层流FSS。缺乏TERT活性的内皮
显示线粒体碎片,无法与Flow保持一致,这是需要的关键功能
这些数据共同促使我们的中心假设是
内皮和血管适应至需要的内皮PGC1α-TERT信号传导
剪切和正常的血管稳态。为了研究这一假设,我们提议首先
确定PGC1α如何使用A影响体内FSS的内皮反应
他莫昔芬可诱导的Cre/Lox系统产生内皮特异性PGC1α基因切除,在
原位共聚焦显微镜,单细胞RNA-seq,网络药物和APOE - / - 动脉粥样硬化
模型。同样,我们将使用相同的策略和可诱导的内皮TERT基因切除。
最后,使用缺乏PGC1α或TERT的细胞的细胞培养,我们将剖析
PGC1α-TERT信号传导影响内皮FSS反应性的机制
特别关注FSS诱导的PGC1α基因组占用率,线粒体和细胞代谢,
内皮细胞的流动比对,并将其定位于细胞核与线粒体。
总的来说,这些研究将洞悉内皮细胞的新范式
对FSS的响应以及维持静止的内皮单层的要求
抵抗血管疾病。有了这些信息,我们应该有必要的见解来设计新的
减轻血管疾病发病率和死亡率的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Francis Keaney其他文献
John Francis Keaney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Francis Keaney', 18)}}的其他基金
Telomerase Reverse Transcriptase in Vascular Homeostasis
端粒酶逆转录酶在血管稳态中的作用
- 批准号:
10619665 - 财政年份:2020
- 资助金额:
$ 59.47万 - 项目类别:
Telomerase Reverse Transcriptase in Vascular Homeostasis
端粒酶逆转录酶在血管稳态中的作用
- 批准号:
10159954 - 财政年份:2020
- 资助金额:
$ 59.47万 - 项目类别:
Role of energy metabolism in the brown fat program
能量代谢在棕色脂肪计划中的作用
- 批准号:
9135635 - 财政年份:2015
- 资助金额:
$ 59.47万 - 项目类别:
Mitochondrial Biogenesis and Endothelial Cell Phenotype
线粒体生物发生和内皮细胞表型
- 批准号:
7581392 - 财政年份:2009
- 资助金额:
$ 59.47万 - 项目类别:
相似国自然基金
Ca2+/Calcineurin/NFATc1轴介导瓣膜内皮损伤促进主动脉瓣钙化机制的研究
- 批准号:81800343
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
NLRP3炎症小体在主动脉瓣钙化中的作用及机制研究
- 批准号:81670351
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
适合腔内治疗的兔新型腹主动脉瘤模型建立及血流动力学对新模型的作用及机制
- 批准号:81501569
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
PC1调控平滑肌细胞表型转化在促进主动脉夹层形成中的作用及其机制研究
- 批准号:81570438
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
多囊蛋白1调控平滑肌细胞自噬在主动脉夹层形成中的作用及机制
- 批准号:81471896
- 批准年份:2014
- 资助金额:69.0 万元
- 项目类别:面上项目
相似海外基金
The mechanisms and roles of mitochondria dysfunction in cardiac arrhythmogenesis
线粒体功能障碍在心律失常发生中的机制和作用
- 批准号:
10734432 - 财政年份:2023
- 资助金额:
$ 59.47万 - 项目类别:
Neutrophils play a pivotal role in vascular aging
中性粒细胞在血管老化中发挥关键作用
- 批准号:
10637703 - 财政年份:2023
- 资助金额:
$ 59.47万 - 项目类别:
Gene Therapy in Hutchinson-Gilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症的基因治疗
- 批准号:
10343225 - 财政年份:2022
- 资助金额:
$ 59.47万 - 项目类别:
Immune-compatible, unfixed, xenogeneic extracellular matrix for heart valve prostheses
用于心脏瓣膜假体的免疫相容性、未固定、异种细胞外基质
- 批准号:
10626122 - 财政年份:2022
- 资助金额:
$ 59.47万 - 项目类别: