Establishing a spatial map of dopamine reward prediction error computations and their function in distinct associative learning processes across the striatum: a methodological framework
建立多巴胺奖励预测误差计算的空间图及其在纹状体不同联想学习过程中的功能:方法框架
基本信息
- 批准号:10725129
- 负责人:
- 金额:$ 3.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAnatomyAnimalsAreaAssociation LearningBasal GangliaBehaviorBehavioralBehavioral ModelBehavioral ParadigmBostonBrain regionCharacteristicsChoice BehaviorChronicClassificationComplexCorpus striatum structureCuesDevelopmentDevicesDiagnosticDiseaseDopamineEducational process of instructingEtiologyFiberFiber OpticsFosteringFunctional disorderFutureGoalsHeterogeneityImpairmentInvestigationLearningLightLocationMapsMental disordersMentorshipMethodologyMethodsModelingMusNeurosciencesObsessive-Compulsive DisorderOperant ConditioningOpticsOutcomeParkinson DiseasePatternPhotometryProcessRecording of previous eventsResearchResolutionResponse to stimulus physiologyRewardsSchizophreniaShapesSignal TransductionSiteStimulusSymptomsTechniquesTestingTraineeshipTrainingTraining SupportUniversitiesUpdateVariantaddictionbehavior testcell typecollaborative environmentdesigndigitaldopaminergic neuroneffective therapyexperienceflexibilityimprovedin vivonervous system disorderneural circuitoptical fiberoptogeneticspostsynapticprogramsresponsesegregationspatiotemporaltechnology developmenttool
项目摘要
PROJECT SUMMARY/ABSTRACT. Dopamine (DA) signaling in the striatum, the main input to the basal
ganglia, is critical for instrumental learning, a process involving associations of stimuli, responses, and outcomes.
DA dysfunction results in diverse symptoms in disorders such as obsessive-compulsive disorder, Parkinson’s
Disease, and addiction, which are often attributed to an imbalance in distinct instrumental learning processes.
Anatomically segregated subregions of the striatum are thought to support stimulus-outcome (S-O), stimulus-
response (S-R), and response-outcome (R-O) associations. Further, while the dorsomedial striatum (DMS) is
necessary for flexible goal-directed behavior, the dorsolateral striatum (DLS) supports automatic, outcome-
independent habitual behavior. While dopamine (DA) is typically thought to encode a reward prediction error
(RPE), a teaching signal which drives associative learning, studies suggest that DA release dynamics vary
depending on the target region. However, it is unknown how natural spatiotemporal DA release dynamics support
learning distinct stimulus, response, and outcome associations. These gaps hinder the development of targeted
diagnostics and treatments for dopamine-dysfunction affecting distinct striatum regions.
This proposed project will make strides toward understanding the functional and computational
significance of spatially varying DA dynamics in distinct associative learning processes. A behavioral paradigm
which requires mice to switch from a cue-dependent S-R strategy to a cue-independent strategy based on recent
actions and outcomes will enable classification of behavior strategy across timescales. This behavioral paradigm
will be combined with a new multi optical fiber photometry method to record DA release dynamics throughout
the volume of the striatum as mice learn and update distinct stimulus, response and outcome contingencies.
This new large-scale, cell-type specific recording method will be applied to establish a spatial map of distinct DA
RPE correlates and can be adapted to record distributed cell-type specific dynamics of any brain region with
high spatiotemporal resolution. Finally, this method will be advanced with a digital mirror device (DMD) to target
light to large, yet spatially precise, regions of the striatum for optogenetic manipulation which mimics the spatial
scale and resolution of natural DA release dynamics.
Completion of this project will support practical and theoretical training in three main areas: behavioral
testing and analysis, functional circuit analysis, and technology development. Dr. Mark Howe (sponsor) will
provide mentorship and training in in vivo analysis of neural circuits and dynamics. Dr. David Boas (co-sponsor),
the director of the Neurophotonics Center at Boston University, will provide training in the concepts and
techniques used for optical neuro-engineering, which will augment training supported by the NSF
Neurophotonics National Research Traineeship Program. The Graduate Program for Neuroscience (GPN) at
Boston University will provide additional training while fostering a collaborative and interdisciplinary environment.
项目摘要/摘要。纹状体中的多巴胺(DA)信号传导,是基本的主要输入
神经节对于工具学习至关重要,这是一个涉及刺激,反应和结果的过程。
DA功能障碍会导致诸如强迫症,帕金森氏症等疾病中的潜水员符号
疾病和成瘾,通常归因于不同工具学习过程中的失衡。
纹状体的解剖分离子区域被认为支持刺激结果(S-O),刺激 -
响应(S-R)和响应结果(R-O)关联。此外,虽然背侧纹状体(DMS)为
对于灵活的目标指导行为所必需的,背纹纹状体(DLS)支持自动,结果 -
独立的习惯行为。通常认为多巴胺(DA)编码奖励预测错误
(RPE),一种驱动关联学习的教学信号,研究表明DA释放动态变化
取决于目标区域。但是,尚不清楚自然时空DA释放动力学如何支持
学习独特的刺激,反应和结果关联。这些差距阻碍了目标的发展
多巴胺功能的诊断和治疗,影响不同的纹状体区域。
这个拟议的项目将迈向理解功能和计算
在不同的关联学习过程中空间变化的DA动力学的重要性。行为范式
这要求小鼠从基于最新
行动和结果将使行为策略跨时标进行分类。这种行为范式
将与一种新的多光纤光度法方法结合在一起,以记录整个释放动力学
随着小鼠的学习和更新不同的刺激,反应和结果突发事件,纹状体的体积。
这种新的大规模,细胞类型的特定记录方法将应用于建立不同DA的空间图
RPE相关,可以适应与任何大脑区域的分布的细胞类型特定动力学一起
高时空分辨率。最后,该方法将使用数字镜设备(DMD)来提前
光到大但在空间上精确的纹状体区域,用于光学遗传操作,模仿空间
自然DA释放动力学的比例和分辨率。
该项目的完成将支持三个主要领域的实用和理论培训:行为
测试和分析,功能电路分析和技术开发。马克·豪(Mark Howe)(赞助商)将
在神经回路和动力学的体内分析中提供精神和培训。 David Boas博士(共同发起人),
波士顿大学神经素养中心主任将提供概念的培训
用于光学神经工程的技术,该技术将增加NSF支持的培训
Neurophotonics国家研究实习计划。神经科学研究生课程(GPN)
波士顿大学将在培养协作和跨学科环境的同时提供额外的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleanor Brown其他文献
Eleanor Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eleanor Brown', 18)}}的其他基金
Establishing a spatial map of dopamine reward prediction error computations and their function in distinct associative learning processes across the striatum: a methodological framework
建立多巴胺奖励预测误差计算的空间图及其在纹状体不同联想学习过程中的功能:方法框架
- 批准号:
10537425 - 财政年份:2022
- 资助金额:
$ 3.17万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
- 批准号:
10819927 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Effect of chronic ethanol exposure on synaptic organization in the rostromedial tegmental nucleus
慢性乙醇暴露对吻内侧被盖核突触组织的影响
- 批准号:
10809364 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
In vivo Perturb-map: scalable genetic screens with single-cell and spatial resolution in intact tissues
体内扰动图:在完整组织中具有单细胞和空间分辨率的可扩展遗传筛选
- 批准号:
10578616 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别: