Investigating the role of nuclear mechanics in the regulation of chromatin structure and embryonic cell fate
研究核力学在染色质结构和胚胎细胞命运调节中的作用
基本信息
- 批准号:10723483
- 负责人:
- 金额:$ 12.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAffectAutomobile DrivingBindingBiological AssayCell Differentiation processCell NucleusCellsChromatinChromatin ModelingChromatin StructureClustered Regularly Interspaced Short Palindromic RepeatsCritical PathwaysCryoelectron MicroscopyCytoplasmCytoskeletonDetectionDevelopmentEducationElectron MicroscopyEmbryoEmbryonic DevelopmentFertilizationGene ExpressionGenerationsGenetic TranscriptionGenomicsGerm LayersGoalsHeterochromatinImageImmunofluorescence ImmunologicInfertilityInner Cell MassLabelLamin Type ALearningLightLinkMaintenanceMammalian CellMammalsMechanicsMembrane ProteinsMentorsMethodsMolecularMusNuclearNuclear EnvelopeNuclear MatrixNucleosomesPathway interactionsPlacentaPostdoctoral FellowPregnancyProcessProteinsProtocols documentationRegulationRegulatory PathwayResearchResistanceResolutionRoleRunningScientistSignal PathwaySignal TransductionSpecialistSpecific qualifier valueSupporting CellTechniquesTestingTrainingVisualizationWorkblastocystblastomere structurecell fate specificationcell typeearly pregnancyembryo cellembryo tissueexperimental studyimplantationin vivoinsightmechanical forcemechanical propertiesmechanical signalnovelnovel strategiespluripotencypost-doctoral trainingpreimplantationprogramssensortomographytranscriptome sequencingtransmission process
项目摘要
SUMMARY
The inner cell mass (ICM) and trophectoderm (TE) are the first two cell types specified during mammalian
development. TE cells support implantation and give rise to the placenta, whereas ICM cells forms the embryo
and some extraembryonic tissues. Their differentiation is therefore critical for successful pregnancy. The
mechanically-regulated Hippo signaling pathway is differentially activated in ICM and TE cells, driving gene
expression programs that define these cell states. These programs also depend on cell type-specific chromatin
landscapes. How mechanical forces regulate chromatin structure and embryonic cell fates during pre-
implantation is however not fully understood. I hypothesize that mechanical forces transmitted though the
cytoskeleton, regulate TE transcriptional programs by modulating both Hippo signaling and chromatin structure.
In this proposal, I will test this hypothesis by defining how nuclear tension regulates Hippo signaling and
chromatin organization during early embryonic differentiations. My ultimate goal is to define the mechanistic links
connecting mechanical and regulatory pathways to cell and chromatin states. This work will enhance our
understanding of cell fate specification, both in relationship to early embryogenesis and implantation, and more
broadly. My postdoctoral work in the Giraldez lab showed that Lamin A/C is transcriptionally up-regulated in TE,
compared to ICM, and that it regulates TE identify; LMNA/C depletion leads to an ICM-like transcriptional state
reminiscent of Hippo pathway activation. In Aim 1 (K99), I will investigate regulation of Hippo by Lamin A/C and
determine the role of mechanical sensing by cytoskeletal networks in the regulation of this signaling. In Aim 2
(K99/R00), to determine how mechanical forces regulate chromatin, I will apply advanced electron microscopy
approaches to visualize nucleosome resolution chromatin structure in vivo. During the training period in the
Giraldez lab, I will apply a novel labeling strategy, combined with cryo EM to characterize lamina-heterochromatin
interactions. During the R00 period and beyond, I will apply these approaches to determine how compaction of
the embryo and the generation of mechanical forces on the nucleus impact chromatin structure and ICM/TE
fates. In Aim 3 (R00), I will use chimeric embryos and other developmental assays to examine how changes in
the mechanical properties of the nucleus affects differentiation potential. I will also quantify nuclear stiffness and
chromatin structure in developing mouse embryos. This work paves the way for a deeper understanding of the
role of mechanical forces in regulating gene expression and cell identity. This proposal brings together training
and concepts that I have acquired throughout my education and new approaches (RNA-seq and cryo-EM) that
I will learn in my mentor’s (Giraldez) lab, from other scientists and specialists at Yale, and at the lab of my co-
mentors, Elizabeth Villa and Berna Sozen. This proposal will complete my postdoctoral training and prepare me
for my ultimate goal of running a competitive independent research program.
概括
内细胞团(ICM)和滋养外胚层(TE)是哺乳动物细胞分化过程中最先确定的两种细胞类型。
TE 细胞支持植入并产生胎盘,而 ICM 细胞形成胚胎。
因此,它们的分化对于成功妊娠至关重要。
机械调节的 Hippo 信号通路在 ICM 和 TE 细胞中差异激活,驱动基因
定义这些细胞状态的表达程序也取决于细胞类型特异性染色质。
景观。机械力如何调节染色质结构和胚胎细胞命运。
然而,我还没有完全理解机械力是如何通过植入物传递的。
细胞骨架,通过调节 Hippo 信号传导和染色质结构来调节 TE 转录程序。
在本提案中,我将通过定义核张力如何调节 Hippo 信号传导和
我的最终目标是定义早期胚胎分化过程中的染色质组织。
将机械和调控途径与细胞和染色质状态联系起来这项工作将增强我们的能力。
了解与早期胚胎发生和植入等相关的细胞命运规范
我在 Giraldez 实验室的博士后工作表明,Lamin A/C 在 TE 中转录上调,
与 ICM 相比,它调节 LMNA/C 消耗导致类似 ICM 的转录状态;
在目标 1 (K99) 中,我将研究 Lamin A/C 和 Hippo 通路的调节。
目标 2 确定细胞骨架网络的机械传感在信号传导调节中的作用。
(K99/R00),为了确定机械力如何调节染色质,我将应用先进的电子显微镜
在体内训练期间可视化核小体分辨率染色质结构的方法。
Giraldez 实验室,我将应用一种新颖的标记策略,结合冷冻电镜来表征层异染色质
在 R00 期间及之后,我将应用这些方法来确定如何压缩。
胚胎和细胞核上机械力的产生影响染色质结构和 ICM/TE
在目标 3 (R00) 中,我将使用嵌合胚胎和其他发育分析来检查命运如何变化。
细胞核的机械特性会影响分化潜能。
这项工作为更深入地了解小鼠胚胎中的染色质结构铺平了道路。
该提案将机械力在调节基因表达和细胞身份中的作用结合起来。
以及我在整个教育过程中获得的概念和新方法(RNA-seq 和冷冻电镜)
我将在我的导师(Giraldez)的实验室、耶鲁大学的其他科学家和专家以及我的同事的实验室学习。
导师伊丽莎白·维拉(Elizabeth Villa)和伯纳·索森(Berna Sozen)将完成我的博士后培训并为我做好准备。
我的最终目标是运行一个有竞争力的独立研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alice Louisa Sherrard其他文献
Alice Louisa Sherrard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Layilin as a modulator of platelet activation and thromboinflammation
Layilin 作为血小板活化和血栓炎症调节剂
- 批准号:
10607168 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别:
Analyzing the role of cAMP and STAT3 signaling in cartilage homeostasis and osteoarthritis development
分析 cAMP 和 STAT3 信号在软骨稳态和骨关节炎发展中的作用
- 批准号:
10822167 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别:
Mechanisms underlying a decline in neural stem cell migration during aging
衰老过程中神经干细胞迁移下降的机制
- 批准号:
10750482 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
- 批准号:
10906499 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别: