Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
基本信息
- 批准号:10906499
- 负责人:
- 金额:$ 10.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY: This proposed project focuses on understanding how mutations in beta cardiac myosin
with diverse and often opposing effects on myosin molecular function contribute to similar disease phenotypes
of hypertrophic cardiomyopathy (HCM): cardiomyocyte (CM) hypertrophy, hypercontractility, and tissue fibrosis.
Understanding disease mechanisms and the heterogeneity of phenotypes across multiple scales
(molecular, cellular, and clinical) will enable the development of better and more individualized therapies
for patients with HCM. The first aim of this proposal will clarify the mechanisms by which altered intracellular
forces affect intracellular signaling and CM hypertrophy. The second aim will use computational modeling to
examine how alterations to interrelated parameters of myosin function change force production temporally and
spatially. The third aim will define how altered extracellular mechanics affect CM and cardiac fibroblast
phenotypes. The proposal uses several innovative molecular, cellular, bioengineering, and computational
modeling tools to examine and contextualize the role of altered cellular mechanics in driving changes in cardiac
cell phenotypes. CRISPR/Cas9 gene editing in human induced pluripotent stem cells provides a model system
to investigate the effects of specific mutations in a dynamic cellular context. Micropatterned engineered platforms
will be used to improve myofibril alignment and allow direct measurement of intracellular force production by
traction force microscopy. Molecular biology and transcriptomic techniques will be used to measure changes in
intracellular signaling and gene expression in response to mechanical perturbation. Another innovation is the
novel application of a vinculin tension sensor FRET probe to directly measure intracellular forces at sarcomere
Z disks and at cellular adhesions. Together these platforms will allow direct validation of temporal and spatial
cellular forces predicted using computational modeling (molecular myosin models and cell-specific finite element
models). Finally, investigating the effect of altered extracellular mechanics on CM function and cardiac fibroblast
activation in engineered environments will give insights into the effects of fibrotic remodeling. The research and
career development training plans will enable the transition of Dr. Vander Roest to an independent
career. During the mentored (K99 phase) of this proposal, Dr. Vander Roest will develop technical skills in
molecular biomechanics, FRET measurements, and transcriptome analysis, and expand her skills in
computational modeling in the context of cardiac disease. This training will take place at Stanford University,
under the mentorship of Drs. Bernstein and Spudich, as well as an expert trans-disciplinary advisory committee,
including 2 experts in computational modeling (Drs. Regnier and Campbell). The development of these skills will
support the research plan for the independent phase of this project, combining new skills and experience gained
during this award with Dr. Vander Roest’s past experience in myofibroblast mechanobiology to facilitate a
successful transition to independence.
项目摘要:该拟议项目的重点是了解β心脏肌球蛋白中的突变如何
潜水员和对肌球蛋白分子功能的经常影响有助于类似的疾病表型
肥厚性心肌病(HCM):心肌细胞(CM)肥大,超收缩性和组织纤维化。
了解多个尺度的疾病机制和表型的异质性
(分子,细胞和临床)将能够发展出更好,更个性化的疗法
适用于HCM的患者。该提案的第一个目的将阐明改变细胞内的机制
力影响细胞内信号传导和CM肥大。第二个目标将使用计算建模到
检查如何暂时改变肌球蛋白功能的相互关联参数的变化。
空间。第三个目标将定义细胞外力学改变如何影响CM和心脏成纤维细胞
表型。该提案使用几种创新的分子,细胞,生物工程和计算
建模工具来检查和背景化改变的细胞力学在推动心脏变化中的作用
细胞表型。人类诱导多能干细胞中的CRISPR/CAS9基因编辑提供了模型系统
研究在动态细胞环境中特定突变的影响。微图案工程平台
将用于改善肌原纤维排列,并允许通过
牵引力显微镜。分子生物学和转录组技术将用于测量变化
响应机械扰动的细胞内信号传导和基因表达。另一个创新是
杂种蛋白张力传感器FRET探针的新颖应用直接测量肌膜的细胞内力
Z磁盘和细胞粘附。这些平台将允许直接验证临时和空间
使用计算建模预测的细胞力(分子肌球蛋白模型和细胞特异性有限元
模型)。最后,研究改变细胞外力学对CM功能和心脏成纤维细胞的影响
工程环境中的激活将使您深入了解纤维化重塑的影响。研究和
职业发展培训计划将使Vander Roest博士过渡到独立
职业。在该提案的指导(K99阶段)期间,范德·罗斯特(Vander Roest)博士将发展技术技能
分子生物力学,FRET测量和转录组分析,并扩展她的技能
心脏病背景下的计算建模。该培训将在斯坦福大学举行
在博士的心态下。伯恩斯坦(Bernstein)和斯普迪奇(Spudich)以及专家跨学科咨询委员会,
包括2位计算建模专家(Regnier和Campbell博士)。这些技能的发展将
支持该项目独立阶段的研究计划,结合了新技能和获得的经验
在这个奖项期间,范德·罗斯特(Vander Roest
成功过渡到独立。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Alison Schroer Van...的其他基金
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
- 批准号:1074703910747039
- 财政年份:2023
- 资助金额:$ 10.36万$ 10.36万
- 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
- 批准号:1047029510470295
- 财政年份:2021
- 资助金额:$ 10.36万$ 10.36万
- 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
- 批准号:1030133710301337
- 财政年份:2021
- 资助金额:$ 10.36万$ 10.36万
- 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
膜仿生载基因纳米球体内重编程巨噬细胞抑制肌腱粘连的机制研究
- 批准号:82372389
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Endothelial Metabolic Reprogramming by Interferon-gamma in Coronary Artery Disease
干扰素γ在冠状动脉疾病中的内皮代谢重编程
- 批准号:1066285010662850
- 财政年份:2023
- 资助金额:$ 10.36万$ 10.36万
- 项目类别:
Engineering protease biomarkers to guide surgical therapy for vestibular schwannoma and Neurofibromatosis Type 2
工程蛋白酶生物标志物指导前庭神经鞘瘤和 2 型神经纤维瘤病的手术治疗
- 批准号:1057112510571125
- 财政年份:2023
- 资助金额:$ 10.36万$ 10.36万
- 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
- 批准号:1074703910747039
- 财政年份:2023
- 资助金额:$ 10.36万$ 10.36万
- 项目类别:
Investigating the role of biomechanical forces on the enteric nervous system in Hirschsprung disease
研究生物力学力对先天性巨结肠症肠神经系统的作用
- 批准号:1065657110656571
- 财政年份:2022
- 资助金额:$ 10.36万$ 10.36万
- 项目类别:
Immuno-stromal axes regulate fibroblast heterogeneity in tissue fibrosis and regeneration
免疫基质轴调节组织纤维化和再生中成纤维细胞的异质性
- 批准号:1042897210428972
- 财政年份:2022
- 资助金额:$ 10.36万$ 10.36万
- 项目类别: