Investigating the role of biomechanical forces on the enteric nervous system in Hirschsprung disease
研究生物力学力对先天性巨结肠症肠神经系统的作用
基本信息
- 批准号:10656571
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAffectAwardBehaviorBiomechanicsCalciumCaringCell Adhesion MoleculesCellsCharacteristicsChildhoodClinicalClinical Investigator AwardColonColonic DiseasesCongenital DisordersCongenital MegacolonConstipationDataDepositionDevelopmentDiagnosticDiseaseDistalEducationEnteralEnteric Nervous SystemEnterocolitisEtiologyExcisionExtracellular MatrixFailureFecal IncontinenceFocal Adhesion Kinase 1Focal AdhesionsFoundationsFunctional disorderGastrointestinal tract structureGoalsGrowthHumanHydrogelsImageIn VitroIncidenceInfantIntestinal DiseasesIntestinesInvestigationIon ChannelLaboratoriesLogicMechanicsMediatorMentorsMethodologyModelingMolecularNervous System PhysiologyNeuronal DysfunctionNeuronsNeurotransmittersOperative Surgical ProceduresOutcomePatientsPediatric HospitalsPhenotypePiezo 1 ion channelPostoperative PeriodPrevalencePrognosisProliferatingQuality of lifeRadialResearchRoleScientistSignal TransductionStretchingStructureSurgeonTechnical ExpertiseTechniquesTestingTexasTissuesWorkbiomechanical testcareercell behaviorclinically relevantdistractionexperimental studygain of functiongastrointestinalimprovedin vivoinnovationloss of functionmechanical forcenervous system developmentneuronal survivalnew therapeutic targetnovelpostnatalprognostic toolresponserisk prediction modelskillstissue culturetranslational impact
项目摘要
PROJECT SUMMARY
As a pediatric surgeon at Texas Children’s Hospital, the nation’s largest children’s hospital and a central hub for
the treatment of Hirschsprung’s disease (HSCR)—a disorder caused by defective enteric nervous system (ENS)
development, I strive not only to deliver excellent surgical care, but also to decipher the mechanisms behind
disease etiology. In my practice, I remove the abnormal, aganglionic intestine and pull-through “normal”
ganglionated intestine but continue to be perplexed by the nearly 50% incidence of postoperative bowel
dysfunction. Thus, my goal as an aspiring surgeon-scientist is to investigate the postnatal mechanisms that result
in these poor postoperative outcomes. The K08 program is an ideal foundation to develop the technical and
scientific skills I need to make translational impact for my patients. The present application lays out a five-year
educational and research plan focused on identifying drivers of persistent postoperative dysfunction in the
ganglionated HSCR colon microenvironment. Enteric neurons have long been recognized as mechanically
sensitive to extrinsic force (axial stretch and radial distention) and intrinsic mechanics (tissue stiffness), both of
which are present before and after HSCR surgery. It is not known how these forces affect ENS phenotype and
function, which raises the question of whether known mechanosensitive ion channels and/or focal adhesion
kinase (FAK) signaling could be pathophysiological mediators of ENS responses to tension. Consistent with our
logic, the ion channel Piezo1 and focal adhesion molecule FAK are ubiquitously present in the gastrointestinal
tract, but their role in ENS response to biomechanical forces requires further investigation. My data demonstrates
that HSCR intestine at baseline has a dysregulated ECM, which leads to changes in tissue stiffness, and that
extrinsic force further dysregulates the ECM. Still, it remains unclear how these changes in the ECM
microenvironment regulate the ENS. Therefore, we hypothesize that biomechanical forces on the intestine have
Piezo1-FAK dependent effects on the ENS and regulate ECM composition in a manner that governs the ENS
microenvironment, which ultimately contributes to gut dysfunction in HSCR. I will address this research question
in two aims, under the guidance of my mentor, Dr. Keswani, and expert scientific advisory committee. In Aim 1,
I will define the role of clinically relevant, extrinsic mechanical forces on the ENS in normal and HSCR intestine.
This will allow me to develop new technical expertise in live cell calcium imaging, ex vivo tissue culture, and in
vivo tension models to evaluate the signaling of Piezo1-FAK in ENS responses to extrinsic mechanical forces.
Aim 2 will focus on testing how biomechanical forces regulate the ECM to alter the ENS microenvironment in
HSCR, and whether changes in the ECM are indicative of post-surgical prognosis in HSCR. In this aim, I will
work with novel biomechanical and hydrogel models to investigate the interaction between the ENS and ECM,
and develop a novel risk prediction model using human HSCR tissue features. Completion of these aims will
launch my career as a surgeon-scientist with meaningful impact for the care for my patients.
项目摘要
作为德克萨斯儿童医院的儿科外科医生,美国最大的儿童医院和一个中央枢纽
治疗Hirschsprung疾病(HSCR) - 由肠神经系统有缺陷引起的疾病(ENS)
发展,我不仅努力提供出色的手术护理,而且还努力破译背后的机制
疾病病因。在我的实践中,我删除了异常的,aganglionic肠和拉动“正常”
肠神的神经节,但仍被近50%的术后碗事件所困扰
功能障碍。这是我作为有抱负的外科医生科学家的目标是调查产后机制
在这些不良的术后结果中。 K08计划是开发技术和
我需要对患者产生翻译影响的科学技能。本申请列出了五年
教育和研究计划的重点是确定持续性术后功能障碍的驱动因素
神经节hscr结肠微环境。肠神经元早已被机械识别
对外在力(轴向拉伸和径向距离)和内在力学(组织刚度)敏感
HSCR手术前后存在。这些力如何影响ENS表型和
功能,提出了一个问题,即是否已知的机械敏感离子通道和/或局灶性粘合剂
激酶(FAK)信号传导可能是ENS对张力反应的病理生理介体。与我们一致
逻辑,离子通道压电和焦点广告分子FAK无处不在地存在于胃肠道中
道,但是它们在ENS对生物力学作用的反应中的作用需要进一步研究。我的数据证明了
基线时的HSCR肠的ECM失调,导致组织刚度的变化,并且
外部力进一步失调ECM。尽管如此,尚不清楚ECM中的这些变化如何
微环境调节ENS。因此,我们假设肠上的生物力学力具有
对ENS的压电1-FAK依赖性影响,并以控制ENS的方式调节ECM组成
微环境最终导致HSCR肠道功能障碍。我将解决这个研究问题
在两个目标中,在我的心态的指导下,凯斯瓦尼博士和专家科学咨询委员会。在AIM 1中,
我将在正常和HSCR肠道中定义临床相关的外部机械力对ENS的作用。
这将使我能够在活细胞钙成像,离体组织培养和中发展新的技术专业知识
体内张力模型在ENS对外部机械力的响应中评估压电1-FAK的信号传导。
AIM 2将着重于测试生物力学如何调节ECM以改变ENS微环境
HSCR,以及ECM中的变化是否表明了HSCR的手术后预后。在这个目标中,我会
使用新型的生物力学和水凝胶模型来研究ENS与ECM之间的相互作用,
并使用人类HSCR组织特征开发出新的风险预测模型。这些目标的完成将
启动我作为外科医生科学家的职业生涯,对我的患者护理产生了有意义的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lily S Cheng其他文献
Lily S Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lily S Cheng', 18)}}的其他基金
Investigating the role of biomechanical forces on the enteric nervous system in Hirschsprung disease
研究生物力学力对先天性巨结肠症肠神经系统的作用
- 批准号:
10975058 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Investigating the role of biomechanical forces on the enteric nervous system in Hirschsprung disease
研究生物力学力对先天性巨结肠症肠神经系统的作用
- 批准号:
10507464 - 财政年份:2022
- 资助金额:
-- - 项目类别:
相似国自然基金
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
- 批准号:72363025
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:72104063
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
“以奖代补”:中国政府间转移支付制度设计中的激励导向及影响评估
- 批准号:71773139
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
北方农牧交错带草原生态补奖对农户行为影响及其长效激励机制研究
- 批准号:71763023
- 批准年份:2017
- 资助金额:29.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Lung resident Treg suppression of Th2 resident memory T cells in allergic asthma
过敏性哮喘中肺常驻 Treg 对 Th2 常驻记忆 T 细胞的抑制
- 批准号:
10664599 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Temporospatial Single-Cell Characterization of Angiogenesis and Myocardial Regeneration in Small and Large Mammals
小型和大型哺乳动物血管生成和心肌再生的时空单细胞表征
- 批准号:
10751870 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:
10785755 - 财政年份:2023
- 资助金额:
-- - 项目类别: