Nanoplasmonic Spatiotemporal Imaging of Single-Cell Protein Secretion and Intercellular Communication
单细胞蛋白质分泌和细胞间通讯的纳米等离子体时空成像
基本信息
- 批准号:10723157
- 负责人:
- 金额:$ 25.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAreaAutocrine CommunicationBehaviorBehavior monitoringBinding SitesBiologicalBiological AssayBiomedical ResearchBiosensorCell CommunicationCell Culture TechniquesCell physiologyCell secretionCell surfaceCellsCellular biologyCommunicable DiseasesCommunicationCoupledCouplingDarknessDetectionDevelopmentDiseaseEnzyme-Linked Immunosorbent AssayExpression ProfilingFluorescenceFutureGene Expression ProfilingHep3BHumanImageImaging DeviceImaging TechniquesImaging technologyImmuneImmune responseImmune systemImmunityImmunologyImmunophenotypingIndividualInflammationInflammatoryInterleukin-6KnowledgeLabelMalignant NeoplasmsMarketingMeasuresMediatingMicrofluidicsMicroscopyMolecularNanostructuresPatternPerformancePopulationPrimary carcinoma of the liver cellsProcessProtein SecretionProteinsPublic HealthReagentResearchResearch PersonnelResearch Project GrantsResolutionSamplingScientistSignal PathwaySignal TransductionSignal Transduction PathwaySpatial DistributionStructureSystemT cell differentiationT-Cell ActivationT-LymphocyteTechniquesTechnologyTheoretical modelTimeVisualizationWateraptamercell behaviorcell typecellular imagingcommercializationcommunicable disease diagnosiscostcytokinedensityextracellularfabricationhuman leukocyte antigen testinginsightintercellular communicationmicroscopic imagingnanonanobiosensornanoplasmonicnovelparacrineplasmonicsprotein expressionreal-time imagesreceptorsecretion processsensorsingle cell proteinsspatiotemporaltool
项目摘要
ABSTRACT
The ability to probe the temporal profile of the protein secretion behavior of individual immune cells will impact
future immunology, cell biology, and even infectious disease diagnosis. Knowledge of the ordering and timing of
cytokines (water-soluble proteins essential for intercellular signaling) secreted by activated T cells can
additionally provide the means to discriminate subsets of differentiated T cells by function. Here, the temporal
information is one of the pieces of the whole puzzle in monitoring the behavior of the immune system. The other
critical piece is the cytokine-mediated interplay between different cell types, which involves spatial transport of
cytokines between cells. Putting both pieces of the puzzle together allows us to capture the full picture of the
cytokine release dynamics and cytokine-mediated interactions of cells, which allows us to fully understand the
intercellular signaling processes underlying immunity. However, no study has yet obtained such a picture due to
the lack of a technology for real-time sensing of intercellular cytokine-mediated signaling processes at high
spatial resolution. This research aims to develop a novel label-free imaging technique to fully understand cellular
behaviors during cytokine-mediated activation and communication at a single-cell level. Our approach will
employ biosensors consisting of plasmonic nanoantenna structures, each specifically targeting a particular
cytokine species. We will integrate these biosensors in a microfluidic system incorporating an array of
sample/reagent-flow channels and single-cell trapping microwells. The microfluidic sensor integration will provide
the ability to capture, manipulate, and activate single cells for cell-to-cell communications on a single chip and
to obtain the spatiotemporal profile of cellular cytokine secretion processes in real time, both in a massively,
parallel manner. We will also develop a theoretical algorithm that allows us to extract the quantitative values of
the local cytokine concentration distributions from measured image intensities. SA 1: We will create highly
ordered, high-density plasmonic nanoantenna biosensor arrays, each functionalized by highly selective
aptamers against targeted cytokines. SA 2: We will integrate the aptamer-conjugated plasmonic nanoantenna
arrays into a single-cell manipulation microfluidic system and achieve real-time single-cell secretion imaging at
high throughput. SA 3: We will develop a two-mode (fluorescence and dark-field) microscopy imaging technique
to image spatiotemporal cytokine secretomic profile patterns and cell surface sytokine binding sites. Using this
technique, we will study the IL-6-mediated dynamic intercellular communication between individual human
hepatoma Hep3b cells and CD 4+ T cells.
抽象的
探测个体免疫细胞蛋白质分泌行为的时间特征的能力将影响
未来的免疫学、细胞生物学,甚至传染病诊断。了解顺序和时间安排
激活的 T 细胞分泌的细胞因子(细胞间信号转导必需的水溶性蛋白质)可以
另外还提供了根据功能区分分化 T 细胞亚群的方法。这里,时间
信息是监测免疫系统行为的整个难题的一部分。另一个
关键部分是不同细胞类型之间细胞因子介导的相互作用,其中涉及细胞因子的空间运输
细胞之间的细胞因子。将拼图的两部分放在一起使我们能够捕捉到整个拼图
细胞因子释放动力学和细胞因子介导的细胞相互作用,这使我们能够充分了解
细胞间信号传导过程是免疫的基础。然而,目前还没有研究获得这样的图片,因为
缺乏实时传感细胞间细胞因子介导的高信号传导过程的技术
空间分辨率。本研究旨在开发一种新型无标记成像技术,以充分了解细胞
单细胞水平上细胞因子介导的激活和通讯过程中的行为。我们的方法将
采用由等离子体纳米天线结构组成的生物传感器,每个纳米天线结构专门针对特定的
细胞因子种类。我们将把这些生物传感器集成到一个微流体系统中,该系统包含一系列
样品/试剂流动通道和单细胞捕获微孔。微流体传感器集成将提供
在单个芯片上捕获、操纵和激活单个细胞以进行细胞间通信的能力
实时获取细胞因子分泌过程的时空概况,无论是在大规模、
并行方式。我们还将开发一种理论算法,使我们能够提取
根据测量的图像强度得出局部细胞因子浓度分布。 SA 1:我们将创造高度
有序、高密度等离激元纳米天线生物传感器阵列,每个阵列均通过高度选择性功能化
针对目标细胞因子的适体。 SA 2:我们将集成适配体共轭等离子体纳米天线
将阵列集成到单细胞操纵微流控系统中,并在
高吞吐量。 SA 3:我们将开发一种双模式(荧光和暗场)显微镜成像技术
对时空细胞因子分泌谱模式和细胞表面细胞因子结合位点进行成像。使用这个
技术,我们将研究 IL-6 介导的人类个体之间的动态细胞间通讯
肝癌 Hep3b 细胞和 CD 4+ T 细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katsuo Kurabayashi其他文献
Katsuo Kurabayashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katsuo Kurabayashi', 18)}}的其他基金
Acute and Critical Care Engineering (ACCE) Training Program
急危重症护理工程 (ACCE) 培训计划
- 批准号:
10628090 - 财政年份:2023
- 资助金额:
$ 25.17万 - 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
- 批准号:
8034713 - 财政年份:2010
- 资助金额:
$ 25.17万 - 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
- 批准号:
7766550 - 财政年份:2010
- 资助金额:
$ 25.17万 - 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
- 批准号:
8595156 - 财政年份:2010
- 资助金额:
$ 25.17万 - 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
- 批准号:
8410480 - 财政年份:2010
- 资助金额:
$ 25.17万 - 项目类别:
Targeted Multi-Spectral Dual Axes Confocal Imaging of In Vivo Molecular Expressio
体内分子表达的靶向多光谱双轴共焦成像
- 批准号:
8206731 - 财政年份:2010
- 资助金额:
$ 25.17万 - 项目类别:
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRCNS: Defining the role of astrogenesis in cortical folding
CRCNS:定义星形发生在皮质折叠中的作用
- 批准号:
10831118 - 财政年份:2023
- 资助金额:
$ 25.17万 - 项目类别:
Developing natural compound emodin as a therapy for alcoholic cardiomyopathy
开发天然化合物大黄素治疗酒精性心肌病
- 批准号:
10597858 - 财政年份:2023
- 资助金额:
$ 25.17万 - 项目类别:
Targeting chemotherapy resistant high grade serous ovarian cancer
靶向化疗耐药的高级别浆液性卵巢癌
- 批准号:
10744479 - 财政年份:2023
- 资助金额:
$ 25.17万 - 项目类别: