Integrating targeted and immunotherapy to treat genetically heterogeneous cancers
整合靶向治疗和免疫治疗来治疗遗传异质性癌症
基本信息
- 批准号:9363115
- 负责人:
- 金额:$ 106.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-17 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced Malignant NeoplasmAntibodiesAntigen PresentationAntigensAntineoplastic AgentsCRISPR screenCancer ModelCandidate Disease GeneCategoriesCellsClinicalClinical TrialsCollectionCompetenceComputer Retrieval of Information on Scientific Projects DatabaseDNA DamageDatabasesDiagnosticDiseaseDrug CombinationsDrug TargetingEffector CellGene ExpressionGenesGeneticGoalsGrantHumanImmuneImmune responseImmune systemImmunologicsImmunophenotypingImmunotherapyInfiltrationLaboratoriesLeadMalignant NeoplasmsMeasuresMetabolic stressModelingMusMutationMyeloid CellsNetwork-basedNeuroblastomaPathway AnalysisPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhasePoint MutationPredispositionProteomicsReagentSquamous cell carcinomaT cell responseT-Cell ActivationT-LymphocyteTestingTumor Cell Linecancer immunotherapycancer therapydata mininghigh throughput screeningimmune checkpoint blockadeimmunoregulationimprovedinhibitor/antagonistinnovationmonocytemouse modelneoplastic cellnoveloncologypre-clinicalresponsescreeningsmall moleculetranscriptome sequencingtreatment responsetumortumor microenvironment
项目摘要
Identification of cancer drug targets using high throughput screens of tumor cell lines has led to a number of
agents presently in clinical trials. In addition, recent advances in drugs that attack immune cells within tumors,
such as αCTLA4 and αPD-1, have highlighted the importance of immune modulation as a strategy for cancer
therapy. The next phase of cancer drug target discovery will seek to integrate these strategies to identify
combinations of drugs that most efficiently target both tumor cells and the immune components in advanced
cancers. The goal of this proposal is to identify and validate these combinations using large-scale data mining
and mouse pre-clinical cancer models that mimic the major genetic features of human cancer. This proposal
addresses both mechanisms of immune escape by a) finding genetic targets that may enhance tumor mutation
load, and b) carrying out high throughout screens in T cells or myeloid cells for targets that promote immune
cell infiltration. We will exploit unique mouse models that mirror major genetic categories of human cancer –
high vs low mutation load, and strong vs weak immune infiltrate. Applying single-cell RNAseq and mass
cytometric proteomic analyses, cutting edge immune composition databases and novel computational network
approaches to cancer target discovery using existing large databases, we propose to identify vulnerabilities
addressed by combining small molecule drugs with immunotherapy. We will make immunologically “cold”
tumors, that do not engage the immune system, into “hot” tumors that present more or stronger antigens, or
that encourage infiltration by immune effector cells. To achieve this goal, we propose three highly innovative
aims centered on perturbation of specific targets: first by a CRISP/Cas9 screen in immune cells of the tumor
microenvironment, second through increasing antigen load in tumors to optimize immune recognition and
finally through a network-based identification of tumor-expressed targets that may confer susceptibility to
existing immune-oncology therapies. This represents a true `network' of our collective expertise as well as a
measured collection of candidate and screening approaches.
AIM 1 –We will perform CRISPR screens in monocytes and T-cells to identify genes associated with tumor
entry and function in two distinct tumor types.
AIM 2– We will use genetic or pharmacological perturbation of newly generated candidate genes involved in
metabolic stress and ROS-induced DNA damage to increase mutation load and antigen abundance in a tumor-
specific manner, leading to improved responses to immunotherapy.
AIM 3 – We will exploit gene expression networks to identify druggable targets and pathways that augment
immune responses.
This proposal identifies pathways and perturbants for accelerating immunotherapies.
使用肿瘤细胞系的高通量筛选来鉴定癌症药物靶标已导致许多
此外,攻击肿瘤内免疫细胞的药物的最新进展,
例如 αCTLA4 和 αPD-1,强调了免疫调节作为癌症策略的重要性
癌症药物靶标发现的下一阶段将寻求整合这些策略来识别。
最有效地靶向肿瘤细胞和免疫成分的药物组合
该提案的目标是使用大规模数据挖掘来识别和验证这些组合。
以及模仿人类癌症主要遗传特征的小鼠临床前癌症模型。
通过 a) 寻找可能增强肿瘤突变的遗传靶点来解决这两种免疫逃逸机制
b) 在 T 细胞或骨髓细胞中进行高筛选,以寻找促进免疫的靶标
我们将开发反映人类癌症主要遗传类别的独特小鼠模型 -
高与低突变负荷,以及强与弱免疫渗透应用单细胞 RNAseq 和质量。
细胞计数蛋白质组分析、尖端免疫成分数据库和新颖的计算网络
使用现有大型数据库发现癌症靶标的方法,我们建议识别漏洞
通过将小分子药物与免疫疗法相结合来解决这个问题,我们将使免疫学变得“冷”。
不参与免疫系统的肿瘤转变为呈现更多或更强抗原的“热”肿瘤,或者
为了实现这一目标,我们提出了三种高度创新的方法。
目标集中在扰动特定目标:首先通过肿瘤免疫细胞中的 CRISP/Cas9 筛选
微环境,其次通过增加肿瘤中的抗原负载来优化免疫识别和
最终通过基于网络的肿瘤表达靶点识别,这些靶点可能赋予对肿瘤的易感性
这代表了我们集体专业知识的真正“网络”以及
衡量候选人的收集和筛选方法。
目标 1 – 我们将在单核细胞和 T 细胞中进行 CRISPR 筛选,以鉴定与肿瘤相关的基因
两种不同肿瘤类型的进入和功能。
目标 2 – 我们将利用新生成的候选基因的遗传或药理学扰动参与
代谢应激和 ROS 诱导的 DNA 损伤会增加肿瘤中的突变负荷和抗原丰度
特定的方式,从而改善对免疫疗法的反应。
目标 3 – 我们将利用基因表达网络来识别可增强药物作用的靶点和途径
免疫反应。
该提案确定了加速免疫治疗的途径和干扰因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALLAN BALMAIN其他文献
ALLAN BALMAIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALLAN BALMAIN', 18)}}的其他基金
Integrating targeted and immunotherapy to treat genetically heterogeneous cancers
整合靶向治疗和免疫治疗来治疗遗传异质性癌症
- 批准号:
9767561 - 财政年份:2017
- 资助金额:
$ 106.56万 - 项目类别:
Systems genetics analysis of tumor evolution in the mouse
小鼠肿瘤进化的系统遗传学分析
- 批准号:
10394264 - 财政年份:2017
- 资助金额:
$ 106.56万 - 项目类别:
Integrating targeted and immunotherapy to treat genetically heterogeneous cancers
整合靶向治疗和免疫治疗来治疗遗传异质性癌症
- 批准号:
10199951 - 财政年份:2017
- 资助金额:
$ 106.56万 - 项目类别:
Systems genetics analysis of tumor evolution in the mouse
小鼠肿瘤进化的系统遗传学分析
- 批准号:
10621723 - 财政年份:2017
- 资助金额:
$ 106.56万 - 项目类别:
The Oncogenic and Tumor Suppressor Functions of the Kras isoform 4A in vivo
Kras 亚型 4A 体内的致癌和抑癌功能
- 批准号:
9058497 - 财政年份:2015
- 资助金额:
$ 106.56万 - 项目类别:
The Oncogenic and Tumor Suppressor Functions of the Kras isoform 4A in vivo
Kras 亚型 4A 体内的致癌和抑癌功能
- 批准号:
8672543 - 财政年份:2015
- 资助金额:
$ 106.56万 - 项目类别:
Genetic analysis of ras mutation specificity in skin and lung cancer
皮肤癌和肺癌中ras突变特异性的遗传分析
- 批准号:
9191353 - 财政年份:2015
- 资助金额:
$ 106.56万 - 项目类别:
相似海外基金
Southwest EDRN Clinical Validation Center for Head and Neck Cancer
西南头颈癌EDRN临床验证中心
- 批准号:
10706931 - 财政年份:2023
- 资助金额:
$ 106.56万 - 项目类别:
Effects of Arginine Depletion Combined with Platinum-Taxane Chemotherapy in Aggressive Variant Prostate Cancers (AVPC)
精氨酸消耗联合铂类紫杉烷化疗对侵袭性变异前列腺癌 (AVPC) 的影响
- 批准号:
10715329 - 财政年份:2023
- 资助金额:
$ 106.56万 - 项目类别:
Multicolor PET to interrogate cancer biology
多色 PET 探索癌症生物学
- 批准号:
10598692 - 财政年份:2023
- 资助金额:
$ 106.56万 - 项目类别:
Sulindac sensitizes colorectal cancer to anti-PD-L1 therapy
舒林酸使结直肠癌对抗 PD-L1 疗法敏感
- 批准号:
10889412 - 财政年份:2023
- 资助金额:
$ 106.56万 - 项目类别:
Multi-cellular interactions defining the human brain metastatic niche
多细胞相互作用定义人脑转移生态位
- 批准号:
10651257 - 财政年份:2023
- 资助金额:
$ 106.56万 - 项目类别: