Investigating the molecular mechanisms of glycosaminoglycan assembly
研究糖胺聚糖组装的分子机制
基本信息
- 批准号:10715380
- 负责人:
- 金额:$ 37.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AnabolismAnimalsBindingBinding SitesBiochemicalBiogenesisCarbohydratesCell physiologyCell surfaceCellsCellular biologyChromatin Remodeling FactorComplexCore ProteinDevelopmentDiseaseEndoplasmic ReticulumEnzymesEpigenetic ProcessExtracellular MatrixFamilyGenetic TranscriptionGlucosamineGlycobiologyGlycosaminoglycansGoalsGolgi ApparatusGrowth FactorHomeostasisHumanIn SituInfectionInterdisciplinary StudyKnowledgeLigand BindingLocationMalignant NeoplasmsMammalian CellModificationMolecularMolecular ChaperonesOrganPathway interactionsPhysiologyPlayPolycombPolysaccharidesProcessPropertyProteoglycanProteomicsRegulationResearchRoleScaffolding ProteinSignal TransductionSpecific qualifier valueStructureSugar AcidsSulfateTechniquesTissuesUronic AcidsWorkcell typedevelopmental diseasefunctional genomicsglycosylationhuman diseaseinterestmembernew therapeutic targetnovelpathogenprogramsprotein protein interactionproteoglycan core proteinscaffoldsugartranscription factorvirtual
项目摘要
Title: Investigating the molecular mechanisms of glycosaminoglycan assembly
Project Summary
The long-term goal of this research program is to elucidate and understand the regulatory mechanisms involved
in the biosynthesis of glycosaminoglycans (GAGs) in mammalian cells. GAGs are long, linear polysaccharides
that are expressed on all animal cells and play a key role in many cellular processes, including cell signaling and
development. These complex carbohydrates are typically attached to core proteins, known as proteoglycans,
located on the cell surface and in the extracellular matrix, and the chains are composed of alternating
glucosamine and uronic acid sugar residues that are heterogeneously N- and O-sulfated. The biosynthesis of
GAGs is a non-templated process, driven by the concerted activity of a large family of enzymes localized to the
Golgi and endoplasmic reticulum. The arrangement and orientation of the sulfated sugar residues specify the
location of distinct ligand binding sites on the cell surface, and these modifications can vary temporally during
development and spatially across tissues. The capacity of GAGs to bind ligands impacts the fundamental
properties of cells, the ability to form tissues and organs, and normal physiology. Despite the key functions of
these molecules, there is a significant gap in knowledge regarding the regulatory mechanisms that give rise to
their variable composition and binding properties. Through a multidisciplinary research program that leverages
strengths in functional genomics, cell biology, and glycobiology, we aim to identify and characterize the
mechanisms involved in controlling the inherent diversity of GAG structure and function in cells. Of particular
interest, is the role of chromatin remodeling complexes in regulating GAG assembly during development and in
disease states, as we recently identified members of the polycomb repressive complex (PRC) as novel
epigenetic modifiers of GAG enzyme expression and assembly. We hypothesize that defined epigenetic and
transcriptional programs tune the expression of biosynthetic enzymes in distinct cell types, which modulates their
interaction with a plethora of growth factors and other binding partners in the extracellular matrix. We also aim
to investigate how the core biosynthetic machinery is regulated in situ in the endoplasmic reticulum and Golgi.
We plan to explore the physical association of the biosynthetic enzymes and core proteoglycans in the ER and
Golgi and identify unknown chaperone and/or scaffolding proteins that may tune glycosylation in the secretory
pathway. To carry out this work, we will leverage our historic strengths in the analysis of GAG structure, function,
and regulation to understand: (1) how transcription factors and chromatin remodeling complexes control the
expression of GAG biosynthetic enzymes, which impacts GAG structure and function, (2) how protein-protein
interactions in the ER and Golgi orchestrate proteoglycan assembly in distinct cell types, and (3) how
proteoglycan core proteins act as scaffolds for GAG assembly. Overall, we expect this endeavor to significantly
advance our knowledge regarding the regulatory mechanisms controlling glycosylation and offer new strategies
and targets to manipulate GAG biogenesis in human disease.
标题:研究糖胺聚糖组装的分子机制
项目摘要
该研究计划的长期目标是阐明和了解涉及的监管机制
在哺乳动物细胞中糖胺聚糖(GAGS)的生物合成中。插科打术是长的线性多糖
在所有动物细胞上表达并在许多细胞过程中起关键作用,包括细胞信号和
发展。这些复杂的碳水化合物通常连接到核心蛋白(称为蛋白聚糖)上
位于细胞表面和细胞外基质中,链由交替组成
葡萄糖胺和尿酸糖残基是异构N-和O硫化的。生物合成
插科打s是一个非模范过程,是由局部属于该酶的大型酶的一致活动驱动的
高尔基和内质网。硫酸糖残基的排列和方向指定
不同配体结合位点在细胞表面的位置,这些修饰在时间上可能会变化
开发和空间跨组织。插科打结合配体的能力会影响基本
细胞的特性,形成组织和器官的能力以及正常的生理学。尽管有关键功能
这些分子,关于导致调节机制的知识存在很大的差距
它们的可变组成和结合特性。通过利用的多学科研究计划
功能基因组学,细胞生物学和糖生物学方面的优势,我们旨在识别和表征
控制细胞中GAG结构和功能的固有多样性涉及的机制。特别
兴趣,是染色质重塑复合物在调节开发过程和在调节插孔组件中的作用
疾病状态,正如我们最近确定的Polycomb抑制复合物(PRC)成员是新颖的
GAG酶表达和组装的表观遗传修饰符。我们假设定义的表观遗传学和
转录程序在不同的细胞类型中调整生物合成酶的表达,这使其调节它们
在细胞外基质中与大量生长因子和其他结合伴侣的相互作用。我们也瞄准
为了研究如何在内质网和高尔基体中原位调节核心生物合成机械。
我们计划探索ER中生物合成酶和核心蛋白聚糖的物理关联
高尔基体并识别可能在分泌中调节糖基化的未知伴侣和/或脚手架蛋白
路径。为了进行这项工作,我们将利用我们的历史优势在分析插科打结构,功能,
并了解:(1)转录因子和染色质重塑配合物如何控制
GAG生物合成酶的表达,会影响GAG结构和功能,(2)蛋白质蛋白如何
ER和高尔基体中的相互作用以不同的细胞类型编排蛋白聚糖组装,以及(3)
蛋白聚糖核心蛋白充当插科打组装的支架。总的来说,我们希望这项工作能够大大
提高我们有关控制糖基化的调节机制的知识,并提供新的策略
和操纵人类疾病中堵嘴生物发生的靶标。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Joseph Weiss其他文献
Ryan Joseph Weiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Joseph Weiss', 18)}}的其他基金
Genome-wide Analysis of Anticoagulant Heparin Sulfate for Bioengineering Heparan
用于生物工程类乙酰肝素的抗凝剂硫酸肝素的全基因组分析
- 批准号:
10742641 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
相似国自然基金
熏蒸结合动物堆肥对土壤-蔬菜系统抗生素抗性基因的影响机制
- 批准号:42307033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:82201339
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
一种新型PRC1变体在不同细胞类型中的结合动态与功能研究
- 批准号:31900422
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
多配体协同作用对铬在动物皮内的渗透-结合性能和交联强度的调控机制及应用
- 批准号:21908149
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Involvement of dopamine signaling in chronic pain-induced negative affective state and nicotine use comorbidity
多巴胺信号传导参与慢性疼痛引起的负面情感状态和尼古丁使用合并症
- 批准号:
10662951 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Structural and Functional Analysis of Nucleocytoplasmic Protein O-Glycosyltransferases in Plants
植物核胞质蛋白 O-糖基转移酶的结构和功能分析
- 批准号:
10648930 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Examination of Ornithine Decarboxylase Antizyme RNA Structure and Function from Various Organisms for the Development of Antibiological Agents
检查不同生物体的鸟氨酸脱羧酶抗酶 RNA 结构和功能,用于开发抗生素
- 批准号:
10730595 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别: