Regulation of mitochondrial morphology and functional versatility
线粒体形态和功能多样性的调节
基本信息
- 批准号:10715704
- 负责人:
- 金额:$ 37.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:ApoptosisArchitectureBiochemical ReactionBioenergeticsCardiolipinsCardiovascular DiseasesCell divisionCell physiologyCellsCharacteristicsCommunicationComplexCrista ampullarisDevelopmentDiseaseEukaryotic CellGuanosine Triphosphate PhosphohydrolasesHumanImpairmentKnowledgeLinkLipidsMaintenanceMalignant NeoplasmsMembraneMetabolismMitochondriaMitochondrial DNAMitochondrial ProteinsMolecularMolecular AbnormalityMorphogenesisMorphologyMuscleNeurodegenerative DisordersNeuronsOPA1 geneObesityOrganellesOxidative PhosphorylationPathologyPhysiological ProcessesPlayProbabilityProcessProtein DynamicsProteinsRegulationReticulumRoleShapesSiteSpatial DistributionStructureage relatedcatalystenvironmental changehuman diseasemigrationmitochondrial dysfunctionnovel therapeutic interventionrespiratorysuccess
项目摘要
PROJECT SUMMARY
Eukaryotic cells sequester critical biochemical reactions into discrete membranous compartments, whereby
membrane dynamics driven by protein catalysts facilitate differentiation, communication, and spatial organization
of intracellular compartments. Within a cell, mitochondria are mainly organized into highly interconnected
networks, whose diverse functions are dependent on their complex structure and organization. In humans, OPA1
and MICOS are essential biomolecular machines that control not only the morphology of the mitochondrial
reticulum, but also the efficiency of many key mitochondrial processes, including oxidative phosphorylation,
metabolism, apoptosis, and mtDNA maintenance. The GTPase OPA1 is crucial for mitochondrial IM fusion and
regulating cristae dynamics, whereas the multi-component MICOS complex plays a dual role by shaping IM
cristae junctions and forming contact sites with the outer membrane. Characterizing how mitochondrial dynamics
are realized and regulated will be essential to deciphering the link between mitochondrial morphology and
function. Moreover, molecular abnormalities in mitochondrial dynamics result in aberrant mitochondrial structure,
impaired bioenergetics, severely reduced respiratory capacity, mtDNA instability, increased sensitivity to
apoptosis, and development of a wide variety of disease conditions, including neurodegenerative disorders,
diverse cancers, obesity, and cardiovascular diseases. Yet, the molecular mechanisms that alter mitochondrial
morphology and function remain incompletely understood. Here, using a combination of cellular and structural
analyses, we aim to develop a molecular understanding of mitochondrial dynamics that govern key physiological
processes in cells. We propose to determine the molecular mechanism of mitochondrial morphogenesis by
exploring the assembly mechanism of OPA1 and its interactions with the mitochondrial lipid cardiolipin (Aim 1).
We further propose to characterize the molecular details of multi-component MICOS complex and protein
dynamics that facilitate cristae formation and maintain the characteristic architecture of mitochondria (Aim 2).
Structural and functional studies of mitochondrial protein machines will provide a platform to identify the basis of
pathologies linked to human disease and age-related illness. Understanding the precise molecular mechanisms
of mitochondrial dynamics will increase the probability of success in developing new therapeutic interventions.
项目摘要
真核细胞将临界生化反应隔离到离散的膜室中,从而
蛋白质催化剂驱动的膜动力学促进分化,交流和空间组织
细胞内室。在细胞内,线粒体主要组织成高度互连
网络的多样化功能取决于其复杂的结构和组织。在人类中,OPA1
MICOS是必不可少的生物分子机器,不仅控制线粒体的形态
网状,以及许多关键线粒体过程的效率,包括氧化磷酸化,
代谢,凋亡和mtDNA维持。 GTPase OPA1对于线粒体IM融合至关重要
调节CRISTAE动力学,而多组分Micos复合物通过塑造IM起着双重作用
Cristae连接和与外膜形成接触位点。表征线粒体动力学
被实现和规范对于破译线粒体形态与之间的联系至关重要
功能。此外,线粒体动力学中的分子异常导致线粒体结构异常,
生物能力受损,呼吸能力严重降低,mtDNA不稳定性,对
细胞凋亡以及多种疾病的发展,包括神经退行性疾病,
多种癌症,肥胖和心血管疾病。然而,改变线粒体的分子机制
形态和功能仍然不完全理解。在这里,结合了细胞和结构
分析,我们旨在发展对关键生理的线粒体动力学的分子理解
细胞中的过程。我们建议确定线粒体形态发生的分子机制
探索OPA1的装配机理及其与线粒体脂质心磷脂的相互作用(AIM 1)。
我们进一步建议表征多组分Micos复合物和蛋白质的分子细节
促进Cristae形成并保持线粒体的特征结构的动力学(AIM 2)。
线粒体蛋白机的结构和功能研究将提供一个平台,以确定
与人类疾病和与年龄有关的疾病有关的病理。了解精确的分子机制
线粒体动力学将增加开发新的治疗干预措施成功的可能性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HALIL AYDIN其他文献
HALIL AYDIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Rational design of anti-cancer therapeutics harnessing the synthetic lethality of methionine metabolism and arginine methyltransferases
利用蛋氨酸代谢和精氨酸甲基转移酶的合成杀伤力合理设计抗癌疗法
- 批准号:
10664872 - 财政年份:2022
- 资助金额:
$ 37.49万 - 项目类别:
Rational design of anti-cancer therapeutics harnessing the synthetic lethality of methionine metabolism and arginine methyltransferases
利用蛋氨酸代谢和精氨酸甲基转移酶的合成杀伤力合理设计抗癌疗法
- 批准号:
10536888 - 财政年份:2022
- 资助金额:
$ 37.49万 - 项目类别:
Utilizing biodegradable porous silicon membranes as a novel design for lung-on-a-chip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
- 批准号:
10400222 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
Elucidating the Structural Mechanisms of NAIP Receptors in Bacterial Detection and Inflammasome Activation
阐明 NAIP 受体在细菌检测和炎症小体激活中的结构机制
- 批准号:
10539284 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
Elucidating the Structural Mechanisms of NAIP Receptors in Bacterial Detection and Inflammasome Activation
阐明 NAIP 受体在细菌检测和炎症小体激活中的结构机制
- 批准号:
10338540 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别: