Revealing mechanisms of specificity and adaptability in molecular information processing through data-driven models
通过数据驱动模型揭示分子信息处理的特异性和适应性机制
基本信息
- 批准号:10715575
- 负责人:
- 金额:$ 38.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAntibody SpecificityArchitectureAtlasesBindingBiological ProcessBiophysicsBuffersCellsChemistryCircadian RhythmsCouplingCytokine SignalingDataDevelopmentDirected Molecular EvolutionEGF geneEngineeringEnvironmentEpitopesGoalsImmune systemInformation TheoryLifeLigandsMachine LearningMetabolismModelingModernizationMolecularMutationNF-kappa BNutrientOrganismPathway interactionsPatternPlanet EarthProteinsResearchSeaSignal TransductionSignaling ProteinSpecificityStatistical ModelsSystemSystems TheoryTimeTransforming Growth Factor betaViralViral ProteinsWorkantibody mimeticsbiophysical modelcircadian pacemakercombinatorialcomputerized toolscytokinedata-driven modeldynamic systemexperimental studyinformation processinginsightmodel buildingmolecular modelingnovelpredictive modelingprogramsreceptorsuccesstheories
项目摘要
Project summary/abstract
The success of life on earth derives from its use of molecules to carry information and
implement algorithms that control chemistry, allowing organisms to respond adaptively to their
environment. The ability to transduce information and respond adaptively ultimately relies on
molecular systems being able to selectively recognize one molecular signal from among many
other similar signals. The signal could be a molecule (molecular specificity), a combination of
molecules (combinatorial specificity), or a time varying concentration pattern (temporal
specificity). Further, these molecular systems need to remain adaptable to switch their
specificity as needed. The central goal of this proposal is to understand the molecular
basis of information processing by building predictive models of molecular,
combinatorial and temporal specificity and adaptability of such specificity. We will
combine biophysically grounded models, information theory and dynamical systems frameworks
for signaling to create data-driven models of molecular, combinatorial and temporal specificity.
We will pursue questions on three scales: (1) molecular specificity: how do proteins like
antibodies recognize a specific partner, such as an epitope on a viral spike protein, and yet can
rapidly change its specificity through mutations? We will develop a biophysically informed
machine learning-based toolbox to exploit evolutionary trajectories observed in directed
evolution experiments to understand the origin of such adaptability. (2) combinatorial
specificity: how do developmental pathways like BMP and TGF-beta resolve specific ligand
combinations to determine cell fate, even though each ligand promiscuously binds multiple
receptors? We will use an information theory framework for molecular cooperativity to build
models of many-many signaling architectures and validate using cell atlas data and experiments
that co-express novel combinations of receptor subunits. (3) temporal specificity: how do
molecular circuits respond to specific time-varying patterns of concentrations but not others in
cytokine signaling and in circadian rhythms? We will develop dynamical systems-theory guided
models of stochastic resonance that allow NF-kB to respond to otherwise undetectable levels of
cytokines and models of circadian clock-metabolism coupling to understand how cells buffer
nutrient fluctuations. Our work is distinguished by combining biophysical models which provide
understanding and insight with statistical models that are better able to leverage modern high-
throughput data and provide predictive power. In addition, our inference toolboxes and
related theory-experiment workflows can used by other labs for similar conceptual
questions about alternate systems, such as, molecular specificity for antibodies and spike
proteins, combinatorial specificity in the TGF-beta pathway or temporal specificity in EGF
signaling respectively for the three thrusts above.
项目概要/摘要
地球上生命的成功源于它利用分子来携带信息和
实施控制化学的算法,使生物体能够适应性地对其做出反应
环境。转换信息和自适应响应的能力最终依赖于
分子系统能够选择性地识别多种分子信号中的一种
其他类似信号。信号可以是一个分子(分子特异性),
分子(组合特异性),或随时间变化的浓度模式(时间
特异性)。此外,这些分子系统需要保持适应性以转换它们的
根据需要的特异性。该提案的中心目标是了解分子
通过建立分子预测模型来进行信息处理的基础,
组合和时间特异性以及这种特异性的适应性。我们将
结合生物物理基础模型、信息论和动力系统框架
用于信号创建分子、组合和时间特异性的数据驱动模型。
我们将从三个层面探讨问题:(1)分子特异性:蛋白质如何喜欢
抗体识别特定的伙伴,例如病毒刺突蛋白上的表位,但可以
通过突变迅速改变其特异性?我们将开发一种基于生物物理学的
基于机器学习的工具箱,利用有向观察到的进化轨迹
进化实验来了解这种适应性的起源。 (2)组合
特异性:BMP 和 TGF-β 等发育途径如何解析特定配体
组合来决定细胞命运,即使每个配体混杂地结合多个
受体?我们将使用分子协同性的信息论框架来构建
多对多信号架构模型并使用细胞图谱数据和实验进行验证
共同表达受体亚基的新组合。 (3) 时间特异性:如何做
分子电路对特定的随时间变化的浓度模式做出反应,但对其他浓度模式没有反应
细胞因子信号传导和昼夜节律?我们将开发动力系统理论指导
随机共振模型,允许 NF-kB 响应否则无法检测到的水平
细胞因子和生物钟代谢耦合模型,以了解细胞如何缓冲
营养波动。我们的工作的特点是结合生物物理模型,提供
对统计模型的理解和洞察力能够更好地利用现代高科技
吞吐量数据并提供预测能力。此外,我们的推理工具箱和
相关的理论实验工作流程可以被其他实验室用于类似的概念
有关替代系统的问题,例如抗体和尖峰的分子特异性
蛋白质、TGF-β 途径的组合特异性或 EGF 的时间特异性
分别为上述三个推力发出信号。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly.
- DOI:10.1038/s41586-023-06890-z
- 发表时间:2024-01
- 期刊:
- 影响因子:64.8
- 作者:Evans, Constantine Glen;O'Brien, Jackson;Winfree, Erik;Murugan, Arvind
- 通讯作者:Murugan, Arvind
Dynamic coexistence driven by physiological transitions in microbial communities.
由微生物群落的生理转变驱动的动态共存。
- DOI:10.1101/2024.01.10.575059
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Narla,AvaneeshV;Hwa,Terence;Murugan,Arvind
- 通讯作者:Murugan,Arvind
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arvind Murugan其他文献
Arvind Murugan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
双特异性纳米抗体EVNA的构建及干预高原肺动脉高压发生发展的效果和机制研究
- 批准号:82360334
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
靶向肿瘤内T细胞的双特异性抗体治疗策略研究
- 批准号:82371845
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于OX40激动剂抗体耐药机制的联合用药策略和双特异性抗体设计
- 批准号:82373898
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
AuNPs@CTLA-4/Nb16-Fc多臂纳米抗体增强DC/肿瘤融合疫苗诱导特异性CTL抗癌研究
- 批准号:82360559
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
HA特异性CD4+Tm促进H7N9诱导的回忆性杆部抗体应答及机制研究
- 批准号:82360413
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Multi-Platform Homogeneous Multiplexed Autoantibody Assay Based on Liquid Micropiston-Enhanced Time-Resolved Forster Resonance Energy Transfer
基于液体微活塞增强时间分辨福斯特共振能量转移的多平台同质多重自身抗体测定
- 批准号:
10576777 - 财政年份:2022
- 资助金额:
$ 38.51万 - 项目类别:
Computational approaches to unravel immune receptor sequencing for cancer immunotherapy
揭示癌症免疫治疗免疫受体测序的计算方法
- 批准号:
10490312 - 财政年份:2021
- 资助金额:
$ 38.51万 - 项目类别:
Computational approaches to unravel immune receptor sequencing for cancer immunotherapy
揭示癌症免疫治疗免疫受体测序的计算方法
- 批准号:
10305538 - 财政年份:2021
- 资助金额:
$ 38.51万 - 项目类别:
GPU Accelerated Protein Docking Software with Flexible Refinement
具有灵活细化功能的 GPU 加速蛋白质对接软件
- 批准号:
8394398 - 财政年份:2012
- 资助金额:
$ 38.51万 - 项目类别: