Intracellular Trafficking of DNA for Gene Therapy

用于基因治疗的 DNA 细胞内运输

基本信息

  • 批准号:
    10710840
  • 负责人:
  • 金额:
    $ 39.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-22 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Under almost all conditions using any method, the levels of gene transfer to any cell or tissue are low because many barriers exist for the efficient delivery of genes to cells. The primary goal of our laboratory is to identify and overcome the intracellular barriers to promote effective gene delivery and therapy. Exogenous viral or non- viral DNA must cross the plasma membrane, travel through the cytoplasm and the cytoskeletal networks, cross the nuclear envelope, localize to specific regions within the nucleus, and be transcribed in order for gene therapy to be successful. We have shown that once in the cytoplasm, plasmids carrying DNA nuclear targeting sequences (DTS) that are required for nuclear import in non-dividing cells rapidly associate with transcription factors that mediate movement along microtubules and across the nuclear envelope. NF-kB is one such factor that binds to several ubiquitously active DTSs and is required for DNA nuclear import, but in the cytoplasm it is maintained in a sequestered state, unable to bind DNA. The question then is how is NF-kB activated to bind to plasmids and mediate their cytoskeletal movement and nuclear import? In the case of NF-kB, a major pathway for its activation is through a set of cytoplasmic dsDNA sensors, such as cGAS-STING, that are part of the innate immune system and drive inflammatory responses. When dsDNA binds to cGAS, signaling cascades are initiated that result in activation of key pro-inflammatory transcription factors (including NF-kB) and ultimately production of pro-inflammatory cytokines. Thus, a major focus in the gene therapy space has been to block activation of these sensors to reduce inflammation. However, we have observed that when cGAS is silenced, cytoplasmically injected plasmids fail to traffic to the nucleus. We hypothesize that limited activation of one or more of these sensors is actually needed for low level activation of key transcription factors in order to facilitate DNA nuclear import in non-dividing cells. If we can find ways to limit sensor activation, but not abolish it, this will allow for enhanced gene delivery with limited accompanying inflammation. We have also spent considerable effort detailing the distribution of plasmids inside the nucleus and have found that the subnuclear mislocalization of plasmids can affect their transcriptional activity. We have found that plasmids localize to discrete transcriptional domains within the nucleus based on the type of promoter (Pol I, Pol II, or Pol III) they carry and that when two different promoter types are placed on one plasmid, not only is the intranuclear distribution of the DNA different that either promoter type alone, but transgene expression is significantly reduced. We will dissect the pathways used for DNA movement within the nucleus and exploit them to improve transgene expression based on the subnuclear localization of the transfected DNA. Our specific aims are to (1) determine whether cytosolic dsDNA sensors are required for DNA nuclear import; (2) evaluate whether residence time of DNA in the cytoplasm affects sensor activation and transfection efficiency; and (3) characterize how subnuclear organization affects exogenous DNA expression.
在几乎所有条件下使用任何方法,基因转移到任何细胞或组织的水平都很低,因为 有许多障碍可以有效地传递基因向细胞。我们实验室的主要目标是确定 并克服细胞内屏障以促进有效的基因递送和治疗。外源性病毒或非 病毒DNA必须穿过质膜,穿过细胞质和细胞骨架网络,交叉 核包膜,位于核内的特定区域,并进行转录以进行基因 疗法成功。我们已经表明,一旦在细胞质中,携带DNA核靶向的质粒 在非分裂细胞中核进口所需的序列(DTS)迅速与转录相关联 介导沿着微管运动和跨核包膜运动的因素。 NF-KB就是这样的因素之一 与几个无处不在活性的DTS结合,是DNA核进口所必需的,但在细胞质中是 保持在隔离状态,无法结合DNA。那么问题是如何激活NF-KB以结合到 质粒并介导其细胞骨架运动和核进口?对于NF-KB,是主要途径 因为它的激活是通过一组细胞质dsDNA传感器(例如CGAS) 先天免疫系统并推动炎症反应。当DSDNA与CGA结合时,信号级联 启动会导致关键促炎转录因子(包括NF-KB)和 最终产生促炎性细胞因子。因此,基因治疗空间的主要重点是 阻止这些传感器的激活以减少炎症。但是,我们观察到,当CGA为 沉默的细胞质注射质粒未能传播到核。我们假设有限的激活 实际上,一个或多个传感器的一个或多个是要按顺序进行关键转录因子的低水平激活 促进在非分裂细胞中进口DNA核的。如果我们能找到限制传感器激活的方法,但不能 废除它,这将允许增强基因递送,而伴随炎症有限。我们也有 花费了巨大的努力,详细介绍了细胞核内质粒的分布,并发现 质粒的核下核错误定位会影响其转录活性。我们发现质粒 基于启动子类型(Pol I,Pol II或 他们携带的是,当将两种不同的启动子类型放在一个质粒上时, 单独启动子类型的DNA的核内分布不同,但是转基因表达是 大幅减少。我们将剖析用于核内DNA运动的途径并利用 它们基于转染的DNA的亚核定位来改善转基因表达。我们的 具体目的是(1)确定DNA核进口是否需要胞质DSDNA传感器; (2) 评估DNA在细胞质中的停留时间是否会影响传感器的激活和转染效率; (3)表征亚核组织如何影响外源DNA表达。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

David A Dean的其他基金

A multimodal delivery and treatment approach for Acute Lung Injury
急性肺损伤的多模式递送和治疗方法
  • 批准号:
    10378509
    10378509
  • 财政年份:
    2020
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
  • 批准号:
    10187645
    10187645
  • 财政年份:
    2020
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
  • 批准号:
    10631224
    10631224
  • 财政年份:
    2020
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
  • 批准号:
    10414888
    10414888
  • 财政年份:
    2020
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Gene therapy for GERD-associated esophageal epithelial barrier dysfunction
GERD相关食管上皮屏障功能障碍的基因治疗
  • 批准号:
    10372106
    10372106
  • 财政年份:
    2020
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
A multimodal delivery and treatment approach for Acute Lung Injury
急性肺损伤的多模式递送和治疗方法
  • 批准号:
    10593959
    10593959
  • 财政年份:
    2020
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
  • 批准号:
    10056811
    10056811
  • 财政年份:
    2020
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Novel Peptide/siRNA Nanoparticles for Treatment of Acute Lung Injury
用于治疗急性肺损伤的新型肽/siRNA纳米颗粒
  • 批准号:
    9376455
    9376455
  • 财政年份:
    2017
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Development of a gene therapy approach to treat acute lung injury using a preclinical, large animal model
使用临床前大型动物模型开发治疗急性肺损伤的基因治疗方法
  • 批准号:
    9044084
    9044084
  • 财政年份:
    2016
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Cell-specific gene delivery methods for expression and silencing in the lung
用于肺部表达和沉默的细胞特异性基因递送方法
  • 批准号:
    8978332
    8978332
  • 财政年份:
    2014
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:

相似国自然基金

基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
  • 批准号:
    62302456
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
  • 批准号:
    32301185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
  • 批准号:
    10660332
    10660332
  • 财政年份:
    2023
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
  • 批准号:
    10722452
    10722452
  • 财政年份:
    2023
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
  • 批准号:
    10574346
    10574346
  • 财政年份:
    2023
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Novel therapy for arthrofibrosis
关节纤维化的新疗法
  • 批准号:
    10759562
    10759562
  • 财政年份:
    2023
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别:
Defining the molecular impact of 16p11.2 deletion on reward response in striatal dopamine receptor D1-expressing neurons
定义 16p11.2 缺失对纹状体多巴胺受体 D1 表达神经元奖赏反应的分子影响
  • 批准号:
    10750328
    10750328
  • 财政年份:
    2023
  • 资助金额:
    $ 39.81万
    $ 39.81万
  • 项目类别: