Challenging the Dominant Model for ATP Regulation of KATP Channels
挑战 KATP 通道 ATP 调节的主导模型
基本信息
- 批准号:9199412
- 负责人:
- 金额:$ 36.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseAddressAdenine NucleotidesAdenylyl ImidodiphosphateAffectAffinityAgonistBindingBiological AssayBlood GlucoseCRSP3 geneCellsConsensusCouplingDataDiabetes MellitusDiazoxideDimerizationDiseaseDoseDrug usageElectrophysiology (science)EquilibriumGenesGenetic PolymorphismGoalsHormonesHydrolysisHyperactive behaviorHyperinsulinismHypoglycemic AgentsIslets of LangerhansLaboratoriesMembrane PotentialsMetabolicMetabolic ControlMetabolismMgADPModelingMolecular ConformationMutationNeonatalNeuronsNeurosecretory SystemsNon-Insulin-Dependent Diabetes MellitusNucleotidesOrthovanadatePancreasPathologicPatientsPersistent Hyperinsulinemia Hypoglycemia of InfancyPharmacologyPhysiologicalPlayPotassium ChannelPotassium Channel BindingPredictive ValuePropertyProteinsRegulationReportingResearchRiskSecondary toStructural ModelsSulfonylurea CompoundsTestingTimeVanadatesVariantWorkanalogbaseblood glucose regulationclinical phenotypecofactordiabetes riskdimerenzyme substrateglucose metabolisminorganic phosphateinsightinsulin secretionmutantneonatal diabetes mellitusnovelpatch clamppreventprogramspublic health relevancereceptor
项目摘要
DESCRIPTION (provided by applicant): The long-term objective of this program is to understand the regulation of ATP-sensitive K+, KATP, channels by adenine nucleotides; the short-term goal is to challenge the prevailing regulatory model. The levels of adenine nucleotides, ATP and ADP, in pancreatic �-cells vary with the rate of glucose metabolism. KATP channels respond to these variations and are key players in the normal control of insulin secretion by blood glucose. These channels are the targets for sulfonylureas, hypoglycemic drugs used to treat type 2 diabetes. Mutations in the ABCC8/SUR1 or KCNJ11/Kir6.2 channel components are causes of neonatal diabetes (ND) and neonatal hyperinsulinism (HI) while polymorphisms in both subunits confer increased risk for type 2 diabetes. The prevailing regulatory hypothesis, used to interpret how mutations and polymorphisms alter channel activity, is that ATP hydrolysis at SUR1 is required to counteract or antagonize the inhibitory action of ATP on the Kir6.2 pore. Thus an overactive SUR1 produces ND by 'hyperactivating' the Kir6.2 pore. Altered SUR1 ATPase activity is proposed to underlie hyperactivation and the increased risk posed by ABCC8 polymorphisms. A recent study from our laboratory challenges the prevailing model (Ortiz et al, JBC, 2012). This study used two ND mutant SURs, without an associated Kir6.2, to define the allosteric relations between ATP and sulfonylurea binding with changes in SUR1 conformation. We established that ATP hydrolysis is not essential to switch SUR1 into a stimulatory conformation and proposed that an increased affinity for ATP is the underlying cause of the disorder. This study has now been extended to show there is a direct relation between the affinity of SUR1 for ATP and clinical phenotype; SURs with greater than normal affinity for ATP correlate with neonatal diabetes, those with lower affinity correlate with congenital hyperinsulinism. The negative allosteric relation between ATP and sulfonylurea interactions with SUR1 underlies the known need for higher doses of sulfonylureas to achieve metabolic control in ND patients. The proposed work will extend the analysis to full channels using pharmacologic and electrophysiologic studies on additional ND SUR1 mutants, polymorphisms, and on SURs with substitutions that inhibit ATPase activity. Previous studies on the action of ATP analogs on KATP channel function are used to support the prevailing model, thus additional work is proposed to define their action on conformational switching of SUR1. The overall objective of the project is to develop the data required to modify the prevailing model so that it can adequately explain regulation of KATP channels under normal physiologic conditions and has predictive value for understanding how mutations, particularly ABCC8 mutations, affect channel function.
描述(由申请人提供):该项目的长期目标是了解腺嘌呤核苷酸对 ATP 敏感的 K+、KATP 通道的调节;短期目标是挑战现行的腺嘌呤调节模式。胰腺细胞中的核苷酸(ATP 和 ADP)随葡萄糖代谢速率的变化而变化,KATP 通道对这些变化做出反应,并且是血糖正常控制胰岛素分泌的关键因素。这些通道是用于治疗 2 型糖尿病的降血糖药物磺酰脲类药物的靶标。ABCC8/SUR1 或 KCNJ11/Kir6.2 通道成分的突变是新生儿糖尿病 (ND) 和新生儿高胰岛素血症 (HI) 的原因,而两个亚基的多态性。用于解释突变和多态性如何改变通道活性的普遍监管假设是 ATP 会增加患 2 型糖尿病的风险。 SUR1 的水解需要抵消或拮抗 ATP 对 Kir6.2 孔的抑制作用,因此过度活跃的 SUR1 通过“过度激活”Kir6.2 孔而产生 ND,认为 SUR1 ATP 酶活性的改变是过度激活和增加风险的基础。我们实验室最近的一项研究挑战了流行的模型(Ortiz 等人,JBC,2012)。本研究使用两个 ND 突变体 SUR(没有相关的 Kir6.2)来定义 ATP 和磺酰脲结合与 SUR1 构象变化之间的变构关系。我们确定 ATP 水解对于将 SUR1 转变为刺激性构象并不重要。对 ATP 的亲和力增加是该疾病的根本原因,该研究现已扩展,表明 SUR1 对 ATP 的亲和力与临床表型之间存在直接关系; ATP 亲和力正常与新生儿糖尿病相关,而亲和力较低的则与先天性高胰岛素血症相关。 ATP 和磺酰脲类与 SUR1 相互作用之间的负变构关系是已知的 ND 患者需要更高剂量的磺酰脲类来实现代谢控制的基础。使用对其他 ND SUR1 突变体、多态性以及具有抑制 ATPase 取代的 SUR 的药理学和电生理学研究将分析扩展到全通道先前关于 ATP 类似物对 KATP 通道功能的作用的研究用于支持流行的模型,因此建议进行额外的工作来定义它们对 SUR1 构象转换的作用。该项目的总体目标是开发所需的数据。修改流行的模型,使其能够充分解释正常生理条件下 KATP 通道的调节,并对理解突变(特别是 ABCC8 突变)如何影响通道功能具有预测价值。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Targeting SUR1/Abcc8-type neuroendocrine KATP channels in pancreatic islet cells.
靶向胰岛细胞中的 SUR1/Abcc8 型神经内分泌 KATP 通道。
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:3.7
- 作者:Nakamura, Yumiko;Bryan, Joseph
- 通讯作者:Bryan, Joseph
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Bryan其他文献
Joseph Bryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Bryan', 18)}}的其他基金
Challenging the Dominant Model for ATP Regulation of KATP Channels
挑战 KATP 通道 ATP 调节的主导模型
- 批准号:
8994733 - 财政年份:2014
- 资助金额:
$ 36.12万 - 项目类别:
Challenging the dominant model for ATP regulation of KATP channels
挑战 KATP 通道 ATP 调节的主导模型
- 批准号:
8630333 - 财政年份:2014
- 资助金额:
$ 36.12万 - 项目类别:
Challenging the Dominant Model for ATP Regulation of KATP Channels
挑战 KATP 通道 ATP 调节的主导模型
- 批准号:
8788349 - 财政年份:2014
- 资助金额:
$ 36.12万 - 项目类别:
TRANSGENIC MOUSE MODEL FOR FAMILIAL HYPERINSULINISM
家族性高胰岛素血症转基因小鼠模型
- 批准号:
6381037 - 财政年份:1998
- 资助金额:
$ 36.12万 - 项目类别:
TRANSGENIC MOUSE MODEL FOR FAMILIAL HYPERINSULINISM
家族性高胰岛素血症转基因小鼠模型
- 批准号:
6177496 - 财政年份:1998
- 资助金额:
$ 36.12万 - 项目类别:
相似海外基金
Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
- 批准号:
10568723 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Targeting Energetics to Improve Outcomes in Hypertrophic Cardiomyopathy
靶向能量药物以改善肥厚型心肌病的预后
- 批准号:
10687401 - 财政年份:2022
- 资助金额:
$ 36.12万 - 项目类别:
Elucidating the Molecular Mechanism of TRIP13-mediated Radiation Resistance in Oral Squamous Cell Carcinoma
阐明 TRIP13 介导的口腔鳞状细胞癌放射抗性的分子机制
- 批准号:
10480747 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
Defining the Translocation Mechanisms of SARS-CoV-2 nsp13 Helicase to Aid in Antiviral Development
定义 SARS-CoV-2 nsp13 解旋酶的易位机制以帮助抗病毒药物开发
- 批准号:
10490903 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别: