High-Throughput Modeling of ALS Using iPSC-Derived Neural Tube Microarrays
使用 iPSC 衍生的神经管微阵列对 ALS 进行高通量建模
基本信息
- 批准号:9548846
- 负责人:
- 金额:$ 39.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgonistAmyotrophic Lateral SclerosisAnatomyAnteriorApoptosisAstrocytesBiomimeticsBrainCell Culture TechniquesCell LineCell physiologyCellsCentral Nervous System DiseasesCervicalCessation of lifeChestCoculture TechniquesComplexDNA Sequence AlterationDerivation procedureDiagnosisDiseaseDisease ProgressionDisease modelEmbryoEngineeringEtiologyFibroblast Growth FactorFibroblast Growth Factor 8GDF11 geneGeneticGenotypeHornsHumanIn VitroIncubatorsInvestigationLinkMethodologyMethodsMicrofabricationMicrofluidicsMicroscopeModelingMorphologyMotor CortexMotor NeuronsNeural tubeNeuraxisNeurodegenerative DisordersNeuroepithelial CellsNeuronal DifferentiationNeuronsParalysedPathologicPathologyPatientsPatternPattern FormationPhasePopulationPopulation HeterogeneityProbabilityRodentSHH geneSpinalSpinal CordStem cellsStructureSurfaceSymptomsTechniquesTestingTherapeuticTissue EngineeringTissuesTretinoinVertebral columnWNT Signaling Pathwaybone morphogenetic protein 4bone morphogenic proteindensitydrug discoveryexperienceexperimental studyhigh throughput screeninghindbrainhuman pluripotent stem cellimprovedin vivoinduced pluripotent stem cellmimeticsmorphogensnerve stem cellnervous system disorderprogenitorpublic health relevancerelating to nervous systemscreeningsmall molecule therapeuticstooltranscription factor
项目摘要
DESCRIPTION (provided by applicant): Amyotrophic Lateral Sclerosis (ALS) is a late-onset neurodegenerative disease that causes selective loss of motor neurons (MNs) in the brain, hindbrain, and spinal cord leading to paralysis and death within ~5 years of symptomatic onset. There is no cure or means to halt disease progression, but induced pluripotent stem cells (iPSC) derived from ALS patients have enormous potential to aid elucidation of the disease's etiological factors and facilitate screening for potential small molecule therapeutics. However, progress with these cells is limited because it remains a challenge to robustly elicit ALS' hallmark pathology of MN-specific apoptosis from the majority of ALS-iPSC lines/genotypes in vitro. We hypothesize that this challenge can be overcome by engineering in vitro disease models that optimally recapitulate the tissue microenvironments experienced by MNs in vivo. Thus, we propose a high-throughput tissue engineering approach for creating in vitro ALS-iPSC-derived disease models that contain the cellular diversity, spatial organization, and regionalization found
within endogenous spinal cord tissues. Once developed, our versatile high-throughput platform would facilitate investigating ALS' pathological mechanisms, screening for potential therapeutics, and even possibly aid in improving the diagnosis of patients with early ALS symptoms. In the R21 phase, we will engineer a high-throughput microarray platform for generating in vitro mimics of transverse sections of the embryonic neural tube, called Neural Tube Microarrays (NTM). In Aim 1, we will test the ability of micro-contact printed substrates to induced formation of rosette structures from human pluripotent stem cell-derived neuroepithelial cells. In Aim 2, we will integrate these substrates with a microscope stage-top microfluidic platform that can both support high-throughput live-cell imagining during long-term cell culture and produce stable trans-rosette gradients of soluble molecules. In Aim 3, we will test whether opposing gradients of Sonic hedgehog and Bone morphogenic protein-4 can induce the cellular diversity and spatial organization of neural progenitors within arrayed rosettes that is analogous to the dorsoventral patterning observed in the developing human neural tube, thus creating NTMs. In Aim 1 of the R33 phase, we will test whether combinations of Wnt signaling agonist CT99021, Fibroblast growth factor-8, Growth/differentiation factor-11, and Retinoic Acid can regionalize the patterned rosettes to diverse sections of the spinal cord as indicated by expression of Hox transcription factors. Finally in Aim 2 of the R33 phase, NTMs containing mimics of diverse spinal cord niches will be generated from a panel of ALS-iPSC lines, co- cultured with similarly patterned astrocytes, and used to screen whether the mimetic microenvironments uniquely provided in the NTM platform can robustly induce MN-specific apoptosis.
描述(由申请人提供):肌萎缩侧索硬化症 (ALS) 是一种迟发性神经退行性疾病,会导致大脑、后脑和脊髓中的运动神经元 (MN) 选择性丧失,导致出现症状后约 5 年内瘫痪和死亡发病。目前尚无治愈方法或方法来阻止疾病进展,但源自 ALS 患者的诱导多能干细胞 (iPSC) 具有巨大的潜力,有助于阐明该疾病的病因因素,并有助于筛选潜在的小分子疗法。然而,这些细胞的进展有限,因为在体外从大多数 ALS-iPSC 系/基因型中强烈引发 MN 特异性细胞凋亡的 ALS 标志性病理学仍然是一个挑战。我们假设可以通过设计体外疾病模型来克服这一挑战,该模型可以最佳地重现 MN 在体内经历的组织微环境。因此,我们提出了一种高通量组织工程方法,用于创建体外 ALS-iPSC 衍生的疾病模型,其中包含发现的细胞多样性、空间组织和区域化
内源性脊髓组织内。一旦开发完成,我们的多功能高通量平台将有助于研究 ALS 的病理机制、筛选潜在的治疗方法,甚至可能有助于改善对早期 ALS 症状患者的诊断。 在 R21 阶段,我们将设计一个高通量微阵列平台,用于生成胚胎神经管横截面的体外模拟物,称为神经管微阵列(NTM)。在目标 1 中,我们将测试微接触印刷基材诱导人多能干细胞衍生的神经上皮细胞形成玫瑰花结结构的能力。在目标 2 中,我们将这些基底与显微镜载物台顶部的微流体平台集成,该平台既可以支持长期细胞培养过程中的高通量活细胞成像,又可以产生稳定的可溶性分子的反玫瑰花梯度。在目标 3 中,我们将测试 Sonic Hedgehog 和骨形态发生蛋白 4 的相反梯度是否可以诱导阵列花结内神经祖细胞的细胞多样性和空间组织,类似于在发育中的人类神经管中观察到的背腹模式,从而创建非关税措施。在 R33 阶段的目标 1 中,我们将测试 Wnt 信号传导激动剂 CT99021、成纤维细胞生长因子-8、生长/分化因子-11 和视黄酸的组合是否可以将图案化的玫瑰花结区域化到脊髓的不同部分,如下所示Hox 转录因子的表达。最后,在 R33 阶段的目标 2 中,将从一组 ALS-iPSC 系中生成包含不同脊髓生态位模拟物的 NTM,与类似图案的星形胶质细胞共培养,并用于筛选 NTM 中是否唯一提供的模拟微环境平台可以强烈诱导 MN 特异性细胞凋亡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randolph S Ashton其他文献
Randolph S Ashton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randolph S Ashton', 18)}}的其他基金
Evaluating Human Pluripotent Stem Cell-Derived Neural Rosette Arrays as a Neural Tube Defect Risk Screening Platform
评估人类多能干细胞衍生的神经花环阵列作为神经管缺陷风险筛查平台
- 批准号:
10369044 - 财政年份:2021
- 资助金额:
$ 39.44万 - 项目类别:
Evaluating Human Pluripotent Stem Cell-Derived Neural Rosette Arrays as a Neural Tube Defect Risk Screening Platform
评估人类多能干细胞衍生的神经花环阵列作为神经管缺陷风险筛查平台
- 批准号:
10218408 - 财政年份:2021
- 资助金额:
$ 39.44万 - 项目类别:
Human Microphysiological Model of Afferent Nociceptive Signaling
传入伤害性信号传导的人体微生理模型
- 批准号:
10348860 - 财政年份:2019
- 资助金额:
$ 39.44万 - 项目类别:
High-Throughput Modeling of ALS Using iPSC-Derived Neural Tube Microarrays
使用 iPSC 衍生的神经管微阵列对 ALS 进行高通量建模
- 批准号:
8900372 - 财政年份:2014
- 资助金额:
$ 39.44万 - 项目类别:
High-Throughput Modeling of ALS Using iPSC-Derived Neural Tube Microarrays
使用 iPSC 衍生的神经管微阵列对 ALS 进行高通量建模
- 批准号:
8700618 - 财政年份:2014
- 资助金额:
$ 39.44万 - 项目类别:
相似国自然基金
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
无义介导的mRNA降解途径参与家族性肌萎缩侧索硬化症神经元损伤的机制及干预研究
- 批准号:82371871
- 批准年份:2023
- 资助金额:45 万元
- 项目类别:面上项目
泛素样蛋白在肌萎缩侧索硬化症发病过程中的作用和机制研究
- 批准号:82230038
- 批准年份:2022
- 资助金额:261 万元
- 项目类别:重点项目
神经先天免疫系统调控肌萎缩侧索硬化症微卫星重复扩增相关二肽重复蛋白清除的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
FUS通过调控ATP6V1C2表达参与青少年型肌萎缩侧索硬化症发生机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Repurposing Siponimod for Alzheimer's Disease
重新利用西波尼莫德治疗阿尔茨海默病
- 批准号:
10671526 - 财政年份:2021
- 资助金额:
$ 39.44万 - 项目类别:
Repurposing Siponimod for Alzheimer's Disease
重新利用西波尼莫德治疗阿尔茨海默病
- 批准号:
10274977 - 财政年份:2021
- 资助金额:
$ 39.44万 - 项目类别:
Repurposing Siponimod for Alzheimer's Disease
重新利用西波尼莫德治疗阿尔茨海默病
- 批准号:
10587745 - 财政年份:2021
- 资助金额:
$ 39.44万 - 项目类别:
A microphysiologic multicellular organ-on-chip to inform clinical trials in FTD/ALS
为 FTD/ALS 临床试验提供信息的微生理多细胞器官芯片
- 批准号:
10515787 - 财政年份:2020
- 资助金额:
$ 39.44万 - 项目类别:
A microphysiologic multicellular organ-on-chip to inform clinical trials in FTD/ALS
为 FTD/ALS 临床试验提供信息的微生理多细胞器官芯片
- 批准号:
10204148 - 财政年份:2020
- 资助金额:
$ 39.44万 - 项目类别: