Define redundant functions of H2AX and NBS1 in DNA repair
定义DNA修复中H2AX和NBS1的冗余功能
基本信息
- 批准号:9206732
- 负责人:
- 金额:$ 36.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-25 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATM activationAddressAffectApplications GrantsBRCA1 geneBiological ProcessCamptothecinCancer PatientCell LineCell SurvivalCell physiologyCellsComplexDNADNA DamageDNA Double Strand BreakDNA RepairDNA Repair PathwayDNA damage checkpointDNA lesionDNA-dependent protein kinaseDataDefectDouble Strand Break RepairEnsureExcisionExhibitsFoundationsGene ProteinsGenomeGenomic InstabilityGoalsHumanHypersensitivityImpairmentKnock-outLaboratoriesLibrariesMaintenanceMediatingMolecularMusNBS1 genePathway interactionsPhosphorylationPlayPoisonProcessProteinsProteomicsRecruitment ActivityResearch PersonnelRoleS PhaseSeriesSignal PathwaySignal TransductionSiteTestingType I DNA TopoisomerasesWorkataxia telangiectasia mutated proteincancer preventioncancer therapygenome integrityhomologous recombinationin vivoinhibitor/antagonistnucleasep53-binding protein 1precision oncologyprotein functionrecombinational repairrepairedresponsesensortumorigenesiswhole genome
项目摘要
Project Summary
Deciphering the molecular mechanisms underlying genomic instability and tumorigenesis is the long-term
goal of my laboratory. The broad objective, of this proposal, reflects our pursuit to gain a comprehensive
understanding of the network involved in DNA repair and to determine how these proteins and pathways
intersect, interact, communicate, coordinate, and collaborate for genome maintenance. The short-term goal is
to perform detailed mechanistic studies of several DNA damage signaling and repair pathways, which will
provide the foundation to achieve our long-term goal of exploiting DNA repair network for cancer therapy.
This proposal will define two overlapping DNA damage-signaling pathways that together are essential for
cell survival. We and other researchers have constructed an elaborate signaling pathway that acts downstream
of H2AX and regulates the recruitment and accumulation of many DNA damage repair proteins at sites of DNA
breaks. This H2AX-dependent pathway is composed of H2AX, MDC1, RNF8, and RNF168. However, repair
defects observed in H2AX-, MDC1-, RNF8-, or RNF168-deficient cells or mice are mild, raising the possibility
that there is an H2AX-independent mechanism involved in the recruitment of these downstream repair
proteins. We propose that this H2AX-independent pathway is controlled by NBS1.
On the basis of our previous studies and preliminary data presented in this proposal, we hypothesize that
the H2AX- and NBS1-dependent pathways are involved in the DNA damage response and are critical for cell
survival. We believe that these two pathways have redundant functions, especially in promoting homologous
recombination repair. However, they are not completely separate, since they intersect at multiple points. This
makes it considerably challenging for us to delineate the functions of these two redundant pathways. It is
unknown whether we can elucidate the contribution of a single pathway to the ever-growing network, i.e., can
we untangle the network to understand the mechanisms by which different pathways intersect and contribute
to biological processes? We will address this question in this application and we will further study the
mechanisms by which the H2AX- and NBS1-dependent pathways act together to ensure cell survival and the
completion of DNA repair. We propose the following specific aims: 1) determine whether NBS1 acts
redundantly with the established H2AX-MDC1-RNF8-RNF168 pathway to ensure cell survival; 2) delineate the
NBS1-dependent pathway; and 3) explore the mechanisms underlying cell lethality caused by NBS1 and H2AX
co-depletion. These studies will not only allow us to understand the redundant functions of H2AX and NBS1 in
vivo but will also reveal ways to investigate the functions of proteins and pathways in today’s complex signaling
networks. Moreover, results from these studies will provide the rationale for exploiting DNA repair defect and
applying synthetic lethality concept in precision medicine for cancer patients.
项目概要
破译基因组不稳定性和肿瘤发生背后的分子机制是长期的任务
我的实验室的目标 该提案的总体目标反映了我们对获得全面成果的追求。
了解参与 DNA 修复的网络并确定这些蛋白质和途径如何
交叉、相互作用、沟通、协调和协作以进行基因组维护。
对几种 DNA 损伤信号传导和修复途径进行详细的机制研究,这将
为实现我们利用 DNA 修复网络进行癌症治疗的长期目标奠定了基础。
该提案将定义两条重叠的 DNA 损伤信号通路,它们共同对于
我们和其他研究人员构建了一条作用于下游的精心设计的信号通路。
H2AX 并调节 DNA 位点上许多 DNA 损伤修复蛋白的招募和积累
该 H2AX 依赖性途径由 H2AX、MDC1、RNF8 和 RNF168 组成,但修复。
在 H2AX、MDC1、RNF8 或 RNF168 缺陷细胞或小鼠中观察到的缺陷很轻微,这增加了可能性
存在一种独立于 H2AX 的机制参与这些下游修复的招募
我们认为这种不依赖于 H2AX 的途径受 NBS1 控制。
根据我们之前的研究和本提案中提供的初步数据,我们致力于
H2AX 和 NBS1 依赖性途径参与 DNA 损伤反应,对细胞至关重要
我们认为这两条途径具有冗余功能,特别是在促进同源性方面。
然而,它们并不是完全分开的,因为它们在多个点相交。
这使得我们很难描述这两条冗余路径的功能。
未知我们是否可以阐明单一路径对不断增长的网络的贡献,即
我们解开网络以了解不同路径交叉和贡献的机制
我们将在本应用中解决这个问题,并且我们将进一步研究
H2AX 和 NBS1 依赖性途径共同作用以确保细胞存活和
我们提出以下具体目标:1)确定NBS1是否起作用。
与已建立的 H2AX-MDC1-RNF8-RNF168 通路冗余,以确保细胞存活;2) 描绘
NBS1依赖性途径;3)探索NBS1和H2AX引起细胞致死的机制
这些研究不仅能让我们了解 H2AX 和 NBS1 的冗余功能。
体内,还将揭示研究蛋白质功能和当今复杂信号传导途径的方法
此外,这些研究的结果将为利用 DNA 修复缺陷和
适用于癌症患者的精准医学中的综合致死概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junjie Chen其他文献
Junjie Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junjie Chen', 18)}}的其他基金
Elucidating mechanisms underlying replication checkpoint control
阐明复制检查点控制的底层机制
- 批准号:
10620981 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
Deciphering pathways involved in topoisomerase II turnover
破译拓扑异构酶 II 周转涉及的途径
- 批准号:
10552113 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
Exploring DNA damage response pathways as targets for cancer therapy
探索 DNA 损伤反应途径作为癌症治疗的目标
- 批准号:
10515484 - 财政年份:2022
- 资助金额:
$ 36.6万 - 项目类别:
Project 4: Coordinating Nucleolytic Pathways During Crosslink Repair
项目 4:在交联修复过程中协调溶核途径
- 批准号:
9148677 - 财政年份:2017
- 资助金额:
$ 36.6万 - 项目类别:
Define redundant functions of H2AX and NBS1 in DNA repair
定义DNA修复中H2AX和NBS1的冗余功能
- 批准号:
10053713 - 财政年份:2017
- 资助金额:
$ 36.6万 - 项目类别:
Define redundant functions of H2AX and NBS1 in DNA repair
定义DNA修复中H2AX和NBS1的冗余功能
- 批准号:
10311996 - 财政年份:2017
- 资助金额:
$ 36.6万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Ataxia Telangiectasia Mutated (ATM)-mediated hepatic DNA damage in pediatric nonalcoholic fatty liver disease
共济失调毛细血管扩张突变 (ATM) 介导的儿童非酒精性脂肪性肝病中的肝 DNA 损伤
- 批准号:
10475172 - 财政年份:2021
- 资助金额:
$ 36.6万 - 项目类别:
Investigating obesity-induced altered ovarian intracellular signaling
研究肥胖引起的卵巢细胞内信号传导改变
- 批准号:
10318369 - 财政年份:2021
- 资助金额:
$ 36.6万 - 项目类别:
Ataxia Telangiectasia Mutated (ATM)-mediated hepatic DNA damage in pediatric nonalcoholic fatty liver disease
共济失调毛细血管扩张突变 (ATM) 介导的儿童非酒精性脂肪性肝病中的肝 DNA 损伤
- 批准号:
10301928 - 财政年份:2021
- 资助金额:
$ 36.6万 - 项目类别:
Ataxia Telangiectasia Mutated (ATM)-mediated hepatic DNA damage in pediatric nonalcoholic fatty liver disease
共济失调毛细血管扩张突变 (ATM) 介导的儿童非酒精性脂肪性肝病中的肝 DNA 损伤
- 批准号:
10674036 - 财政年份:2021
- 资助金额:
$ 36.6万 - 项目类别:
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10353124 - 财政年份:2021
- 资助金额:
$ 36.6万 - 项目类别: