Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
基本信息
- 批准号:10353124
- 负责人:
- 金额:$ 2.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATM Signaling PathwayATM activationAddressAdultAffectAlkaliesAlkaline Single-Cell Gel Electrophoresis AssayAnatomyAnimalsAutomobile DrivingBioenergeticsBiologicalBiological AssayBiologyBrainBrain regionC-terminalCaenorhabditis elegansCell Culture TechniquesCell CycleCell DeathCell NucleusCellsComet AssayComplementConfocal MicroscopyDNADNA DamageDNA Double Strand BreakDNA RepairDNA lesionDNA strand breakDataDefectDiseaseDisease ProgressionDisease modelDissectionDoseDouble Strand Break RepairEtiologyFellowshipFoundationsFunctional disorderGeneticGenomeGenomic InstabilityGoalsGrantHistonesHomeostasisHumanIdiopathic Parkinson DiseaseImmunohistochemistryImpairmentLRRK2 geneLaboratoriesLeadLearningMammalian CellMeasuresMediatingMentorsMentorshipMethodologyMethodsMicrotome - medical deviceMitochondriaMitochondrial DNAMolecularMovementMovement DisordersMutationNamesNerve DegenerationNeurodegenerative DisordersNuclearParkinson DiseasePathogenicityPathologyPathway interactionsPatientsPhenotypePhosphorylationPhosphotransferasesProteinsPublicationsPublishingReactive Oxygen SpeciesReportingResearchRodent ModelRoleSignal TransductionSiteSubstantia nigra structureTP53 geneTechnical ExpertiseTechniquesTestingUnited StatesVariantbasecareerdopaminergic neuronexperienceexperimental studygenome integrityin vivoinduced pluripotent stem cellinsightkinase inhibitorlaboratory experiencemembermitochondrial dysfunctionmitochondrial genomemutantneurotoxicnovelnovel therapeutic interventionnovel therapeuticsnucleic acid metabolismp53-binding protein 1parent grantrecruitresponseskillstraining opportunity
项目摘要
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder and over ten million
people worldwide are living with PD. To date, treatments are only symptomatic; they do not alter the inexorable
progression of the disease. The most common cause of familial and idiopathic PD are mutations in leucine-rich
repeat kinase 2 (LRRK2). LRRK2-associated and idiopathic PD demonstrate mitochondrial impairment, however
our understanding of the molecular underpinnings of mitochondrial dysfunction in PD is limited. In our efforts to
understand the underlying mechanisms driving mitochondrial dysfunction, we found that mitochondrial DNA
damage is a shared phenotype amongst both LRRK2-associated and idiopathic PD. Unrepaired mitochondrial
DNA damage can have major adverse cellular effects, impacting genetic and protein instability, compromising
bioenergetic function, increasing reactive oxygen species, and triggering cell death. Recent preliminary studies
by the Sanders lab has found that blocking kinase activity of ATM (a kinase that functions to sense, signal and
promote repair of DNA damage) rescues PD-induced mitochondrial DNA damage. We further observed that
ATM is activated and initiates the DNA damage response pathway. Interestingly, mitochondrial DNA repair
capacity is impaired with a concomitant increase in specific mitochondrial oxidative DNA lesions. The
overarching goal of the parental grant to understand how dysfunctional LRRK2 triggers the ATM-mediated DNA
damage response pathway, which impairs mitochondrial DNA repair capacity, leading to an increase in
mitochondrial DNA damage, ultimately promoting downstream pathogenic PD cascades. Specific to this
research supplement, we have discovered that the role of mutant LRRK2 extends to nuclear DNA damage.
Based on this data, Dr. Gonzalez-Hunt will determine the molecular identity of the nuclear DNA lesions that are
in common between LRRK2 and idiopathic PD. She will learn new technical expertise and methodology, publish
impactful research and obtain the key preliminary data for competitive K grants to launch an independent
scientific career. Overall this project will directly complement the parental grant and ongoing experiments in the
lab to understand shared pathways driven by LRRK2 dysfunction, in order to provide new insights into PD
pathophysiology and consequently lead to new therapies.
抽象的
帕金森病 (PD) 是最常见的神经退行性运动障碍,超过一千万
迄今为止,全世界都有帕金森病患者,治疗只是对症治疗,并不能改变疾病的本质。
家族性和特发性 PD 的最常见原因是富含亮氨酸的突变。
然而,重复激酶 2 (LRRK2) 相关的和特发性 PD 表现出线粒体损伤。
我们对帕金森病线粒体功能障碍的分子基础的了解是有限的。
了解驱动线粒体功能障碍的潜在机制,我们发现线粒体 DNA
损伤是 LRRK2 相关性和特发性线粒体 PD 的共同表型。
DNA 损伤可能会对细胞产生重大不利影响,影响遗传和蛋白质的不稳定性,危及生命
生物能量功能,增加活性氧,并引发细胞死亡。
Sanders 实验室发现,阻断 ATM 的激酶活性(一种具有感知、信号传递和信号传递功能的激酶)
促进 DNA 损伤的修复)可挽救 PD 引起的线粒体 DNA 损伤。
ATM 被激活并启动 DNA 损伤反应途径,即线粒体 DNA 修复。
随着特定线粒体氧化 DNA 损伤的增加,这种能力会受到损害。
父母资助的总体目标是了解功能失调的 LRRK2 如何触发 ATM 介导的 DNA
损伤反应途径,损害线粒体 DNA 修复能力,导致
线粒体 DNA 损伤,最终促进下游致病性 PD 级联反应。
研究补充,我们发现突变体 LRRK2 的作用延伸至核 DNA 损伤。
根据这些数据,Gonzalez-Hunt 博士将确定核 DNA 损伤的分子身份,这些损伤是
她将学习新的技术专业知识和方法,并发表论文。
有影响力的研究并获得竞争性 K 赠款的关键初步数据,以启动独立的
总体而言,该项目将直接补充父母的资助和正在进行的实验。
实验室了解 LRRK2 功能障碍驱动的共享通路,以便为 PD 提供新的见解
病理生理学,从而导致新的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAURIE H SANDERS其他文献
LAURIE H SANDERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAURIE H SANDERS', 18)}}的其他基金
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10470384 - 财政年份:2020
- 资助金额:
$ 2.9万 - 项目类别:
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10914717 - 财政年份:2020
- 资助金额:
$ 2.9万 - 项目类别:
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10533639 - 财政年份:2020
- 资助金额:
$ 2.9万 - 项目类别:
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10266792 - 财政年份:2020
- 资助金额:
$ 2.9万 - 项目类别:
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10687197 - 财政年份:2020
- 资助金额:
$ 2.9万 - 项目类别:
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10622266 - 财政年份:2020
- 资助金额:
$ 2.9万 - 项目类别:
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10098948 - 财政年份:2020
- 资助金额:
$ 2.9万 - 项目类别:
相似海外基金
Structural Mechanisms of DNA Damage Sensing and Activation of the ATR, Fanconi Anemia, and ATM Checkpoints
DNA 损伤感知和 ATR、范可尼贫血和 ATM 检查点激活的结构机制
- 批准号:
10639156 - 财政年份:2023
- 资助金额:
$ 2.9万 - 项目类别:
Ataxia Telangiectasia Mutated (ATM)-mediated hepatic DNA damage in pediatric nonalcoholic fatty liver disease
共济失调毛细血管扩张突变 (ATM) 介导的儿童非酒精性脂肪性肝病中的肝 DNA 损伤
- 批准号:
10475172 - 财政年份:2021
- 资助金额:
$ 2.9万 - 项目类别:
Ataxia Telangiectasia Mutated (ATM)-mediated hepatic DNA damage in pediatric nonalcoholic fatty liver disease
共济失调毛细血管扩张突变 (ATM) 介导的儿童非酒精性脂肪性肝病中的肝 DNA 损伤
- 批准号:
10301928 - 财政年份:2021
- 资助金额:
$ 2.9万 - 项目类别:
Ataxia Telangiectasia Mutated (ATM)-mediated hepatic DNA damage in pediatric nonalcoholic fatty liver disease
共济失调毛细血管扩张突变 (ATM) 介导的儿童非酒精性脂肪性肝病中的肝 DNA 损伤
- 批准号:
10674036 - 财政年份:2021
- 资助金额:
$ 2.9万 - 项目类别:
Understanding the mechanism of bone marrow stromal cell-mediated protection of FLT3-ITD AML from FLT3-targeted therapy
了解骨髓基质细胞介导的 FLT3-ITD AML 免受 FLT3 靶向治疗影响的机制
- 批准号:
10317091 - 财政年份:2019
- 资助金额:
$ 2.9万 - 项目类别: