Web tools for physician-driven diagnostic interpretation of genomic patient data
用于医生驱动的基因组患者数据诊断解释的网络工具
基本信息
- 批准号:9376874
- 负责人:
- 金额:$ 71.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureAreaBioinformaticsClinicClinicalClinical InvestigatorCommunitiesComputer AnalysisComputer softwareDataData AnalysesData CollectionData QualityData SetDevelopmentDiagnosisDiagnosticDiseaseDropoutEnsureEnvironmentEtiologyExonsFailureFamily RelationshipFeedbackGenderGenesGeneticGenomeGenomic medicineGenomicsHealthcareHereditary DiseaseHospitalsInheritance PatternsInheritedInstitutionInternetIntuitionInvestigationKnowledgeLibrariesMedical ResearchOutcomePathologistPatient Data PrivacyPatientsPhysiciansProcessProtocols documentationQuality ControlRecommendationReportingResearchSamplingSecureSecuritySequence AlignmentSoftware ToolsSystemTechnologyTimeTrainingTranscriptVariantVisualWorkbaseclinical Diagnosisclinical diagnosticsclinical phenotypecostdesigndisease diagnosisexomeexome sequencingfirewallflexibilitygenetic disorder diagnosisgenetic variantgenome sequencinggenomic dataimprovedimproved functioningnovelpatient privacypoint of careprecision medicinepreventskillssuccesstooluser-friendlyweb app
项目摘要
SUMMARY/ABSTRACT
Genomic sequencing provides definitive disease diagnoses for many patients with suspected genetic disease,
ending or preventing lengthy and costly diagnostic odysseys. However, despite extensive efforts of research
clinicians and all current computational analysis technologies, the genetic cause of disease remains
unresolved for over half of the sequenced patients in genetics clinics today. All too often, diagnosis from whole-
exome or genome sequencing data remains elusive even for patients suffering from diseases with well-
understood clinical presentation and genetic architecture. Although diagnostic failure can have multiple causes,
we hypothesize that two reasons contribute significantly. First, current variant prioritization tools work by
reductive filtering on annotations and inheritance patterns to reduce sets of exonic or genomic variants to
small, prioritized lists of candidates. This approach works when clear causative variants are present, but offers
minimal capacity to remove highly ranked but false positive candidates, and provides little guidance when
causative variants have been missed, typically because of unrecognized data quality problems such as low
sequence coverage or exon dropouts. When the first round of analysis yields no plausible candidates, current
tools don't have the ability to suggest a sensible “next step”, e.g. to deepen or expand the search for causative
variants in the data, and the result is analysis dead-end. Second, because of onerous IT expertise and
bioinformatic skill requirements, physicians currently rely on bioinformatics experts to analyze genomic data.
However, the bioinformatician does not possess the physician's clinical expertise or detailed knowledge of
disease presentation, clinical phenotype, and time course of the disease, all of which can be critical in making
a diagnosis. This gap between clinical and computational expertise hinders diagnostic success and disease
discovery. Here we propose to build a set of web tools that offer novel functionality for deeper, systematic re-
examination of the data for disease-causing variants, but are also intuitive and easy to use so clinicians can
themselves analyze their patients' genomic datasets. These tools will be based on our already popular IOBIO
system available at http://iobio.io, and will offer diagnostic analysts the ability to rapidly examine the quality of
their genomic datasets, and visually and in real time search the patient's data for disease causing variants. A
unique aspect of this development is that it will be physician-driven from the outset: a large team of clinical
Investigators will help design, prioritize, and evaluate software features, and integrate the tools into physician
practice and training, ensuring these tools will be usable by clinicians, and they address the most relevant
analysis steps for successful clinical diagnosis. Our tools and training materials will be made widely available,
drastically lowering the barrier to participation in genomic data analysis for all clinicians who can benefit from
genomic data of their patients, helping genomic sequencing to reach its potential as a means to make definitive
clinical diagnoses.
摘要/摘要
基因组测序为许多疑似遗传病的患者提供了明确的疾病诊断,
结束或阻止漫长且昂贵的诊断过程然而,尽管进行了大量的研究工作。
Fortress 和所有当前的计算分析技术,疾病的遗传原因仍然存在
如今,在遗传学诊所中,超过一半的测序患者都没有得到解决,而诊断往往是从整体上进行的。
即使对于患有健康状况良好的疾病的患者来说,外显子组或基因组测序数据仍然难以捉摸。
了解临床表现和遗传结构 尽管诊断失败可能有多种原因,
我们认为有两个重要原因:首先,当前的变体优先排序工具的工作原理是:
对注释和遗传模式进行还原过滤,以减少外显子或基因组变异集
当存在明确的致病变异时,这种方法会起作用,但会提供少量的、优先考虑的候选者列表。
删除排名靠前但误报的候选者的能力极低,并且在以下情况下提供很少的指导:
致病变异被遗漏,通常是由于未识别的数据质量问题,例如低
当第一轮分析没有产生合理的候选序列时,当前的序列覆盖或外显子丢失。
工具无法建议合理的“下一步”,例如加深或扩大对因果关系的搜索。
数据的变异,导致分析陷入死胡同;其次,由于 IT 专业知识繁琐。
生物信息学技能要求,医生目前依靠生物信息学专家来分析基因组数据。
然而,生物信息学家不具备医生的临床专业知识或详细的知识
疾病表现、临床表型和疾病的时间进程,所有这些对于做出决定都至关重要。
临床和计算专业知识之间的差距阻碍了诊断的成功和疾病。
在这里,我们建议构建一套网络工具,为更深入、系统的重新发现提供新颖的功能。
检查数据中是否存在致病变异,但也直观且易于使用,因此忠诚度可以
这些工具将基于我们已经流行的 IOBIO。
系统可在 http://iobio.io 上找到,并将为诊断分析师提供快速检查质量的能力
他们的基因组数据集,并直观地实时搜索患者的数据以查找疾病变异 A。
这一发展的一个独特之处在于,它将从一开始就由医生驱动:一个庞大的临床团队
研究人员将帮助设计、确定优先级和评估软件功能,并将这些工具集成到医生中
练习和培训,确保这些工具可供上校使用,并且它们解决了最相关的问题
我们的工具和培训材料将被广泛使用,以实现成功的临床诊断。
大大降低了所有受益者参与基因组数据分析的障碍
患者的基因组数据,帮助基因组测序发挥其作为确定诊断手段的潜力
临床诊断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabor T Marth其他文献
Gabor T Marth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabor T Marth', 18)}}的其他基金
A reference-free computational algorithm for comprehensive somatic mosaic mutation detection
一种用于综合体细胞嵌合突变检测的无参考计算算法
- 批准号:
10662755 - 财政年份:2023
- 资助金额:
$ 71.89万 - 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 71.89万 - 项目类别:
Enhancing clinical diagnostic analysis with a robust de novo mutation detection tool
使用强大的从头突变检测工具增强临床诊断分析
- 批准号:
10608743 - 财政年份:2022
- 资助金额:
$ 71.89万 - 项目类别:
Calypso: a web software system supporting team-based, longitudinal genomic diagnostic care
Calypso:支持基于团队的纵向基因组诊断护理的网络软件系统
- 批准号:
10376642 - 财政年份:2022
- 资助金额:
$ 71.89万 - 项目类别:
Calypso: a web software system supporting team-based, longitudinal genomic diagnostic care
Calypso:支持基于团队的纵向基因组诊断护理的网络软件系统
- 批准号:
10559599 - 财政年份:2022
- 资助金额:
$ 71.89万 - 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
- 批准号:
10242178 - 财政年份:2020
- 资助金额:
$ 71.89万 - 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
- 批准号:
10027798 - 财政年份:2020
- 资助金额:
$ 71.89万 - 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
- 批准号:
10461828 - 财政年份:2020
- 资助金额:
$ 71.89万 - 项目类别:
Longitudinal models of breast cancer for studying mechanisms of therapy response and resistance
用于研究治疗反应和耐药机制的乳腺癌纵向模型
- 批准号:
10228719 - 财政年份:2018
- 资助金额:
$ 71.89万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 71.89万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 71.89万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 71.89万 - 项目类别:
In vivo label free optical imaging of immune cells in human skin
人体皮肤免疫细胞体内无标记光学成像
- 批准号:
10664746 - 财政年份:2023
- 资助金额:
$ 71.89万 - 项目类别:
ILC3 Syndecan-4 in the Regulation of Intestinal Health and Inflammation
ILC3 Syndecan-4 在肠道健康和炎症调节中的作用
- 批准号:
10678494 - 财政年份:2023
- 资助金额:
$ 71.89万 - 项目类别: