Advanced Development and Validation of 3 Dimensional Spheroid Culture of Primary Cancer Cells using Nano3D Technology

使用 Nano3D 技术对原发性癌细胞的 3 维球体培养进行高级开发和验证

基本信息

  • 批准号:
    9147972
  • 负责人:
  • 金额:
    $ 50.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT: Two-dimensional (2D) tissue culture models are highly simplified cancer models unable to capture the complexity and heterogeneity found in-vivo. Around 95% of new anticancer drugs eventually fail in clinical trial despite robust indications of activity in existing in vitro pre-clinical models, making in vitro testing some of the least predictive. Three dimensional (3D) spheroid culture models have recently advanced to bridge the “in- vitro to in-vivo gap” and provide the means for assembling more complex cancer relevant tissue microenvironments. Although these 3D models are being adopted by industry and the academic community, they have limitations and are hampered by low throughput, lack of consistency, high costs and the need for clinical validation. The Scripps Research Institute Molecular Screening Center (SRIMSC) in partnership with n3D Biosciences Inc., Greiner Bio-One USA Inc., Dr. Derek Duckett at Scripps Research department of Molecular Therapeutics and Dr. David Tuveson, M.D, Ph.D. at Cold Spring Harbor Laboratory (CSHL), have created a strategic collaboration to advance a novel technology known as 3D magnetic bioprinting. Magnetic 3D bioprinting addresses the these critical issues by utilizing n3D's core technology known as the NanoShuttle to levitate and aggregate cells using magnetic forces to produce spheroids/organoids. The ultimate end product will be an affordable; HTS validated 384 and 1536 microplate format that supports rapid/consistent production of 3D spheroids for a wide array of cell types including primary tumor lines. The end goal is to accelerate 3D spheroid cultivation using screening automation, improve cost efficiency and allow for rapid drug testing such as FDA approved drugs in reformulation/repurposing studies. Advancement of this technology will be facilitated through the following: Aim 1: Validation of the current 384 well plate nanosphere technology in a HTS facility for automation compatibility. Compare 3D results to 2D models of KRAS pancreatic cancer cell models as provided by Dr. Tuveson. Aim 2: Validation of n3D spheroid technology for drug testing against select cytotoxic drugs, NCI approved oncology drug set and the Scripps FDA Approved drug collection. CC50 data, i.e. the concentration that produces 50% cellular cytotoxicity, in 2D and in 3D formats will be compared to published literature. Aim 3: n3D Biosciences will produce an advance 1536 well plate NanoShuttle driver compatible for HTS and drug discovery efforts. SRIMSC will evaluate and implement the higher density format for drug discovery utility which will culminate in its testing on a large library of ~150K compounds to demonstrate HTS readiness. Aim 4: The n3D spheroid technology will be employed against patient derived primary Glioblastoma Multiform (GBM) derived cells with the end goal of evaluating its utility in primary cancer cell research. Aim 5: The n3D spheroid technology will be evaluated in-vivo for pancreatic orthotopic tumor effect and its utility in preclinical research. The end goal is to transfer and implement this technology and methods worldwide for cancer research and early drug discovery.
项目概要/摘要: 二维 (2D) 组织培养模型是高度简化的癌症模型,无法捕获 体内发现的复杂性和异质性大约 95% 的新抗癌药物最终在临床试验中失败。 尽管存在体外临床前模型,但现有的活性迹象仍然强劲,这使得体外测试成为一些 三维 (3D) 球体培养模型最近取得了进展,以弥合“内部”。 “体外到体内间隙”并提供组装更复杂的癌症相关组织的方法 尽管这些 3D 模型正在被工业界和学术界采用, 它们有局限性,并受到低吞吐量、缺乏一致性、高成本和需要 与斯克里普斯研究所分子筛选中心 (SRIMSC) 合作进行临床验证。 n3D​​ Biosciences Inc.、Greiner Bio-One USA Inc.、斯克里普斯研究部的 Derek Duckett 博士 Molecular Therapeutics 和冷泉港实验室 (CSHL) 的 David Tuveson 博士 建立了一项战略合作,以推进一种称为 3D 磁性生物打印的新技术。 3D 生物打印利用 n3D 的 NanoShuttle 核心技术解决了这些关键问题 利用磁力悬浮和聚集细胞以产生球体/类器官最终目的。 产品将是一种经济实惠的 HTS 验证的 384 和 1536 微孔板格式,支持快速/一致 为包括原发肿瘤系在内的多种细胞类型生产 3D 球体。 使用筛选自动化加速 3D 球体培养,提高成本效率并允许快速药物 诸如 FDA 批准的药物在重新配制/重新利用研究中的测试将取得进展。 通过以下方式促进: 目标 1:在实验室中验证当前 384 孔板纳米球技术 用于自动化兼容性的 HTS 设施将 KRAS 胰腺癌细胞的 3D 结果与 2D 模型进行比较。 Tuveson 博士提供的模型 目标 2:验证 n3D 球体技术用于药物测试。 选择细胞毒性药物、NCI 批准的肿瘤药物组和 Scripps FDA 批准的 CC50 药物组。 数据,即产生 50% 细胞毒性的浓度,以 2D 和 3D 格式将与 目标 3:n3D Biosciences 将生产先进的 1536 孔板 NanoShuttle 驱动器。 与 HTS 和药物发现工作兼容,SRIMSC 将评估和实施更高密度的格式。 用于药物发现实用程序,最终将在约 150K 化合物的大型库上进行测试 证明 HTS 准备就绪 目标 4:将采用 n3D 球体技术来对抗患者。 原发性多形性胶质母细胞瘤 (GBM) 衍生细胞,最终目标是评估其在原发性癌症中的效用 目标 5:将对胰腺原位肿瘤的 n3D 球体技术进行体内评估。 最终目标是转让和实施该技术并在临床前研究中发挥作用。 全球癌症研究和早期药物发现的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Patrick Spicer其他文献

Timothy Patrick Spicer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Patrick Spicer', 18)}}的其他基金

MaxCyte Scalable Transfection System
MaxCyte 可扩展转染系统
  • 批准号:
    10418347
  • 财政年份:
    2022
  • 资助金额:
    $ 50.14万
  • 项目类别:
Advanced Development and Validation of 3 Dimensional Spheroid Culture of Primary Cancer Cells using Nano3D Technology
使用 Nano3D 技术对原发性癌细胞的 3 维球体培养进行高级开发和验证
  • 批准号:
    9610803
  • 财政年份:
    2018
  • 资助金额:
    $ 50.14万
  • 项目类别:
Advanced Development and Validation of 3 Dimensional Spheroid Culture of Primary Cancer Cells using Nano3D Technology
使用 Nano3D 技术对原发性癌细胞的 3 维球体培养进行高级开发和验证
  • 批准号:
    9902958
  • 财政年份:
    2016
  • 资助金额:
    $ 50.14万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 50.14万
  • 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
  • 批准号:
    10586534
  • 财政年份:
    2023
  • 资助金额:
    $ 50.14万
  • 项目类别:
Core C: Spatial Multiomics Core
核心 C:空间多组学核心
  • 批准号:
    10555895
  • 财政年份:
    2023
  • 资助金额:
    $ 50.14万
  • 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
  • 批准号:
    10667938
  • 财政年份:
    2023
  • 资助金额:
    $ 50.14万
  • 项目类别:
Cryobioprinting for Shelf-Ready Tissue Fabrication and Storage
用于货架组织制造和储存的冷冻生物打印
  • 批准号:
    10927669
  • 财政年份:
    2023
  • 资助金额:
    $ 50.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了