Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
基本信息
- 批准号:9246415
- 负责人:
- 金额:$ 35.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAlgorithmsAlzheimer disease detectionAlzheimer&aposs DiseaseAmyloidAppearanceArchitectureAtlasesBrainCategoriesClinicalCommunitiesComplexComputer softwareComputersCountryCoupledDataDiagnosisDiagnosticDiscipline of Nuclear MedicineDiseaseEarly DiagnosisElderlyFunctional disorderFutureGoalsHeterogeneityImageIndividualJointsLearningMachine LearningMapsMethodsModalityModelingMolecularNatureNerve DegenerationNeurodegenerative DisordersNeurologistNeuropsychological TestsPathologicPathologyPatternPreventive InterventionResearchSamplingScientistSelection BiasSoftware ToolsStagingStructureSymptomsTechniquesTechnologyTherapeuticTimeTrainingWorkbrain abnormalitiesclinical predictorscomparison groupdesigndiagnostic accuracydisease diagnosisforestimaging modalityimprovedin vivoinnovationlearning strategymultimodalitymultitaskneuroimagingnoveloutcome forecastpre-clinicalpublic health relevancesuccesssymptomatologyvector
项目摘要
DESCRIPTION (provided by applicant): Alzheimer's disease (AD) develops for an unknown and variable amount of time before its symptoms fully manifest. But, when the symptoms become clinically observable, a significant neurodegeneration has already taken place. Thus, there is a largely unmet need for technologies that can aid the effective early diagnosis and prognosis of AD in an in vivo and more objective manner. The goal of this renewal project is to develop a set of advanced machine-learning techniques for precise in vivo quantification of pathological changes of brains with multimodality neuroimaging for both early diagnosis and prognosis of AD. AD is a highly heterogeneous neurodegenerative disorder with complex pathophysiology, thus very challenging to pinpoint its subtle pathologies without any aid from advanced computational technologies. To this end, we propose the following four specific aims to identify those subtle disease-induced alterations, derive robust diagnostic conclusions, and predict future disease trajectories. Specifically, in Aim 1, we will develop a multi-view feature representation technique to robustly extract complementary information from neuroimaging data with multiple representative atlases, and then identify a small subset of most discriminative features for AD diagnosis. This novel multi-atlas technique will deviate from the conventional single-atlas approaches in feature representation, which are often susceptible to inter-subject structural variability, registration error, and atlas selection bias. In Aim 2, we will further devlop two novel multi-view feature mapping techniques for collaborative fusion of multimodality information by explicitly considering the distribution heterogeneity of different categories of features extracted from different modalities. This will significantly avoid the unnecessary complexity of feature distributions after our collaborative fusion, thus increasing the efficacy of
subsequent diagnostic classifiers. Specifically, a deep learning technique (with deep multi-layered architecture) will be adopted to hierarchically mine multimodality information that resides
nonlinearly both within each modality and between different modalities. In Aim 3, we will develop a novel multi-task sparse learning technique for joint prediction of diagnostic status and clinical
scores (e.g., ADAS-Cog and MMSE) by considering the inherent correlations between features and between training samples. This will also allow us to exploit the latent structure underlying the data for robust estimation of these highly variable clinical scores. Finally, in Aim 4, we will
jointly predict clinical scores of each given subject in multiple future time points, by developing
coupled random forests that can take advantage of all training subjects with complete or even incomplete multimodality data and further enforce temporal consistency of those estimated clinical scores. All the above-proposed techniques will be evaluated by a large image set of elderly subjects in ADNI. We expect that the successful completion of this renewal project will result in a comprehensive and effective diagnosis/prognosis framework for improving early detection of AD. The respective software tools will be released freely to the research community, as we have done with our HAMMER software, which has been downloaded by >5200 users from >20 countries.
描述(由申请人提供):阿尔茨海默病(AD)在其症状完全显现之前会持续一段未知且可变的时间,但是,当症状在临床上可观察到时,显着的神经变性已经发生。对能够以体内和更客观的方式帮助 AD 进行有效早期诊断和预后的技术的需求尚未得到满足。这个更新项目的目标是开发一套先进的机器学习技术,用于精确的体内病理定量。 AD 是一种具有复杂病理生理学的异质性神经退行性疾病,因此在没有先进计算技术的帮助下很难查明其微妙的病理学。为此,我们提出以下建议。四个具体目标是识别那些微妙的疾病引起的改变,得出可靠的诊断结论,并预测未来的疾病轨迹。具体来说,在目标 1 中,我们将开发一种多视图特征表示技术,以稳健地从中提取补充信息。这种新颖的多图谱技术将偏离传统的单图谱方法的特征表示,而传统的单图谱方法通常容易受到受试者间结构变异的影响。在目标 2 中,我们将通过明确考虑从不同类别提取的特征的分布异质性,进一步开发两种新颖的多视图特征映射技术,用于多模态信息的协作融合。这将显着避免我们的协作融合后特征分布的不必要的复杂性,从而提高了效率。
具体来说,将采用深度学习技术(具有深度多层架构)来分层挖掘驻留的多模态信息。
在目标 3 中,我们将开发一种新颖的多任务稀疏学习技术,用于联合预测诊断状态和临床。
通过考虑特征之间和训练样本之间的内在相关性来计算分数(例如 ADAS-Cog 和 MMSE),这也将使我们能够利用数据背后的潜在结构来稳健地估计这些高度可变的临床分数。 , 我们将
通过开发,共同预测每个给定受试者在多个未来时间点的临床分数
耦合随机森林,可以利用具有完整甚至不完整多模态数据的所有训练受试者,并进一步加强这些估计临床评分的时间一致性,我们将通过 ADNI 中的老年受试者的大型图像集进行评估。预计这一更新项目的成功完成将产生一个全面有效的诊断/预后框架,以改善 AD 的早期检测。相应的软件工具将免费发布给研究界,就像我们对 HAMMER 软件所做的那样。已被下载者来自超过 20 个国家/地区的超过 5200 位用户。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinggang Shen其他文献
Dinggang Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinggang Shen', 18)}}的其他基金
Automatic Pelvic Organ Delineation in Prostate Cancer Treatment
前列腺癌治疗中的自动盆腔器官描绘
- 批准号:
9186673 - 财政年份:2016
- 资助金额:
$ 35.09万 - 项目类别:
Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
- 批准号:
8725738 - 财政年份:2013
- 资助金额:
$ 35.09万 - 项目类别:
Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
- 批准号:
8583365 - 财政年份:2013
- 资助金额:
$ 35.09万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
- 批准号:
8964568 - 财政年份:2012
- 资助金额:
$ 35.09万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8373964 - 财政年份:2012
- 资助金额:
$ 35.09万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8688869 - 财政年份:2012
- 资助金额:
$ 35.09万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8518211 - 财政年份:2012
- 资助金额:
$ 35.09万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
7780861 - 财政年份:2011
- 资助金额:
$ 35.09万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
8725660 - 财政年份:2011
- 资助金额:
$ 35.09万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
8264532 - 财政年份:2011
- 资助金额:
$ 35.09万 - 项目类别:
相似国自然基金
适当冷暴露通过肠道菌群调控心脏免疫微环境改善心梗后心室重构和心力衰竭的作用与机制
- 批准号:82330014
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
SIRT1通过TXNIP/NLRP3通路促进巨噬细胞自噬在烟曲霉感染中的作用及机制研究
- 批准号:82360624
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
心外膜细胞中BRD4通过促进MEOX-1表达激活TGF-β信号通路参与糖尿病心肌病纤维化形成的分子机制研究
- 批准号:82300398
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
红毛藻多糖通过增加肠道鼠乳杆菌丰度双向调节免疫功能机制研究
- 批准号:32302098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
- 批准号:82303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 35.09万 - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 35.09万 - 项目类别:
mAnaging siCkle CELl disease through incReased AdopTion of hydroxyurEa in Nigeria (ACCELERATE)
在尼日利亚通过增加羟基脲的使用来控制镰状细胞病(加速)
- 批准号:
10638598 - 财政年份:2023
- 资助金额:
$ 35.09万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 35.09万 - 项目类别:
Design and Pilot Test of A Prediabetes Digital Patient Activation Tool
糖尿病前期数字患者激活工具的设计和试点测试
- 批准号:
10648646 - 财政年份:2023
- 资助金额:
$ 35.09万 - 项目类别: