Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers

使用机器学习从语言和行为标记识别轻度认知障碍

基本信息

  • 批准号:
    10709094
  • 负责人:
  • 金额:
    $ 33.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary Recent estimates indicate that Alzheimer’s disease (AD) may rank as the third leading cause of death for older people in the United States, just behind heart disease and cancer. While scientists know that AD involves a progressive brain cell failure, the reason why cells fail is still not clear. To understand the progression of the disease, one of the keys is to investigate the cognitive changes in patients with mild cognitive impairment (MCI). Even though biomarkers such as imaging and clinical functions are found to be outstanding in differentiating AD patients from those with normal cognition (NC), studies suggest that their discriminative power in early-stage MCI are rather limited. Detecting signals which distinguish subjects with MCI from those with NC is challenging due to the low sensitivity and high variability of current clinical measures such as annually assessed neuropsychological test results and self-reported functional measurements. Moreover, even though in-vivo biomarkers such as beta-amyloid and tau can be used as indicators of pathological progression towards AD, the screening of biomarkers are prohibitively expensive to be widely used among pre-symptomatic individuals in the outpatient setting. We hypothesize that progressive cognitive impact from MCI has elicited detectable changes in the way people talk and behave, which can be sensed by inexpensive and accessible sensors and leveraged by machine learning (ML) algorithms to build predictive models for quantifying the risk of MCI. Our preliminary results on a small cohort indicated that there are significant differences between MCI and NC subjects during a semi-structured conversation, and ML algorithms can use such differences for differentiating MCI and NC with promising performance. Our preliminary results in behavior monitoring also suggest highly predictive performance using temporal patterns of behavior signals. In the parent project, we are building upon our initial success and conduct comprehensive studies on language and behavior markers in larger-scale cohorts to build high-performance and interpretable ML models for screening MCI. This supplement builds on our current work on digital biomarkers and will focus on further refining the prediction capability of digital biomarkers. Recently, the availability of MRI data from I-CONECT study has provided Unanticipated Opportunity for us to dramatically improve the quality of digital biomarkers. To achieve this goal, in Aim S1 we propose to develop a data-driven algorithms framework that uses high-quality imaging information as auxiliary information to increase the predictive performance of language markers; in Aim S2 we propose to develop a computational framework to use public language databases to improve the quality of language markers. This supplement, if funded, will significant predictive performance improvements of digital biomarkers and therefore improve the predictive power of early detection of MCI.
项目摘要 最近的估计表明,阿尔茨海默氏病(AD)可能是死亡的第三大原因 对于美国的老年人,就在心脏病和癌症之后。虽然科学家知道 AD涉及进行性脑细胞衰竭,原因仍然无法清楚。理解 疾病的进展,其中之一是研究中部患者的认知变化 认知障碍(MCI)。即使发现了成像和临床功能之类的生物标志物 为了使AD患者与正常认知患者(NC)的出色表现出色,研究表明 他们在早期MCI中的判别力量相当有限。检测有区别的信号 由于敏感性低和高可变性,具有NC患者的MCI受试者是具有挑战性的 当前的临床指标,例如每年评估神经心理学测试结果并自我报告 功能测量。而且,即使体内生物标志物(例如β-淀粉样蛋白和tau)也可以 用作病理发展向AD的指标,生物标志物的筛查是 在门诊环境中广泛使用的症状较高。 我们假设MCI的渐进认知影响引起了可检测的方式 人们说话和行为,可以通过便宜且可访问的传感器来感知和杠杆 通过机器学习(ML)算法来构建预测模型,以量化MCI的风险。我们的 小队列的初步结果表明,MCI和 在半结构化对话中的NC受试者,ML算法可以使用此类差异 通过有希望的表现区分MCI和NC。我们在行为监控的初步结果 还建议使用行为信号的临时模式提出高度预测性的性能。在父母中 项目,我们正在基于最初的成功,并就语言和 大规模同伙中的行为标记,以建立高性能和可解释的ML模型 筛选MCI。这种补充是基于我们当前在数字生物标志物上的工作,并将重点放在 进一步完善数字生物标志物的预测能力。最近,从 I-Conect研究为我们提供了意想不到的机会,可以极大地提高 数字生物标志物。为了实现这一目标,在AIM S1中,我们建议开发数据驱动算法 使用高质量成像信息作为辅助信息来增加预测性的框架 语言标记的性能;在AIM S2中,我们建议开发一个计算框架以使用 公共语言数据库,以提高语言标记的质量。如果资助的话,这种补充剂将 数字生物标志物的显着预测性能改善,因此改善了 MCI早期检测的预测能力。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Corticosteroids for infectious critical illness: A multicenter target trial emulation stratified by predicted organ dysfunction trajectory.
皮质类固醇治疗传染性危重疾病:按预测的器官功能障碍轨迹分层的多中心目标试验模拟。
  • DOI:
    10.1101/2024.03.07.24303926
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajendran,Suraj;Xu,Zhenxing;Pan,Weishen;Zang,Chengxi;Siempos,Ilias;Torres,Lisa;Xu,Jie;Bian,Jiang;Schenck,EdwardJ;Wang,Fei
  • 通讯作者:
    Wang,Fei
Development of a federated learning approach to predict acute kidney injury in adult hospitalized patients with COVID-19 in New York City.
开发联合学习方法来预测纽约市成年住院 COVID-19 患者的急性肾损伤。
  • DOI:
    10.1101/2021.07.25.21261105
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaladanki,SurajK;Vaid,Akhil;Sawant,AshwinS;Xu,Jie;Shah,Kush;Dellepiane,Sergio;Paranjpe,Ishan;Chan,Lili;Kovatch,Patricia;Charney,AlexanderW;Wang,Fei;Glicksberg,BenjaminS;Singh,Karandeep;Nadkarni,GirishN
  • 通讯作者:
    Nadkarni,GirishN
Robust Unsupervised Domain Adaptation from A Corrupted Source
Federated Robustness Propagation: Sharing Adversarial Robustness in Heterogeneous Federated Learning
An adaptive federated learning framework for clinical risk prediction with electronic health records from multiple hospitals.
  • DOI:
    10.1016/j.patter.2023.100898
  • 发表时间:
    2024-01-12
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Pan, Weishen;Xu, Zhenxing;Rajendran, Suraj;Wang, Fei
  • 通讯作者:
    Wang, Fei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIROKO Hayama DODGE其他文献

HIROKO Hayama DODGE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HIROKO Hayama DODGE', 18)}}的其他基金

Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
  • 批准号:
    10212669
  • 财政年份:
    2021
  • 资助金额:
    $ 33.03万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10369036
  • 财政年份:
    2020
  • 资助金额:
    $ 33.03万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10203772
  • 财政年份:
    2020
  • 资助金额:
    $ 33.03万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10641031
  • 财政年份:
    2020
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9311584
  • 财政年份:
    2017
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9898209
  • 财政年份:
    2017
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I Administrative Supplement
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段行政补充
  • 批准号:
    10363310
  • 财政年份:
    2017
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9930344
  • 财政年份:
    2017
  • 资助金额:
    $ 33.03万
  • 项目类别:
Conversational Engagement as a Means to Delay Onset AD: Phase II Administrative Supplement
对话参与作为延迟 AD 发作的一种手段:第二阶段行政补充
  • 批准号:
    10058784
  • 财政年份:
    2016
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9348726
  • 财政年份:
    2016
  • 资助金额:
    $ 33.03万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Leveraging genetic and electronic health records data to identify novel targets and drugs for treating alcohol
利用遗传和电子健康记录数据来确定治疗酒精的新靶点和药物
  • 批准号:
    10888495
  • 财政年份:
    2023
  • 资助金额:
    $ 33.03万
  • 项目类别:
Improving identification and healthcare for patients with Inherited Cancer Syndromes: Evidence-based EMR implementation using a web-based computer platform
改善遗传性癌症综合征患者的识别和医疗保健:使用基于网络的计算机平台实施基于证据的 EMR
  • 批准号:
    10831647
  • 财政年份:
    2023
  • 资助金额:
    $ 33.03万
  • 项目类别:
Using Re-inforcement Learning to Automatically Adapt a Remote Therapy Intervention (RTI) for Reducing Adolescent Violence Involvement
使用强化学习自动调整远程治疗干预 (RTI),以减少青少年暴力参与
  • 批准号:
    10834339
  • 财政年份:
    2023
  • 资助金额:
    $ 33.03万
  • 项目类别:
Secondary Analysis and Integration of Existing Data Related to Chronic Orofacial Pain and Placebo Effects - Administrative Supplement
与慢性口面部疼痛和安慰剂效应相关的现有数据的二次分析和整合 - 行政补充
  • 批准号:
    10741330
  • 财政年份:
    2023
  • 资助金额:
    $ 33.03万
  • 项目类别:
Administrative Supplement - Rapid Actionable Data for Opioid Response in Kentucky (RADOR-KY)
行政补充 - 肯塔基州阿片类药物反应的快速可操作数据 (RADOR-KY)
  • 批准号:
    10850016
  • 财政年份:
    2022
  • 资助金额:
    $ 33.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了