Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis

血流和血小板介导的血栓形成的多尺度建模

基本信息

  • 批准号:
    9265504
  • 负责人:
  • 金额:
    $ 71.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Cardiovascular diseases remain the leading cause of death in the developed world, accounting for near 30% of all deaths globally and 35% in the US annually. Coronary artery disease (CAD) with its associated thrombotic risk is responsible for 1 of 6 deaths in the US. Coincidentally, implantable blood recirculating devices, which have provided lifesaving solutions to patients with severe cardiovascular diseases, are burdened with thrombosis and thromboembolic complications, mandating complex life-long anticoagulation. The mechanisms underlying vascular disease processes and device-related thrombotic complications are intertwined. Thrombosis in vascular disease is potentiated by the interaction of blood constituents with an injured vascular wall and the non-physiologic flow patterns generated in cardiovascular pathologies initiate and enhance the hemostatic response by chronically activating the platelets. Similarly, device thrombogenicity is induced by pathological flow fields and contact with foreign surfaces. Upon activation platelets undergo complex biochemical and morphological changes. The coupling of the disparate spatio-temporal scales between molecular level events and the macroscopic transport represents a major modeling and computational challenge, which requires a multidisciplinary integrated multiscale numerical approach. Continuum approaches are limited in their ability to cover the smaller molecular mechanisms such as filopodia formation during platelet activation. Utilizing molecular dynamics (MD) to cover the multiscales involved is computationally prohibitive. In this application we offer to develop a comprehensive state-of-the-art multiscale numerical methodology that will be able to bridge the gap between the macroscopic transport and the ensuing molecular events. We will use an integrated Dissipative Particle Dynamics (DPD) and Coarse Grained Molecular Dynamics (CGMD) approach that allows platelets to continuously change their shape and synergistically activate by a biomechanical transductive linkage chain, interact with other blood constituents and clotting factors, aggregate, and interact and adhere to the blood vessels and devices. In this multiscale model, a mechanotransduction CGMD bottom platelet activation model is embedded into a DPD blood flow top model. The dynamic stresses of the macroscale model will be interactively translated to the micro to nanoscale model of the intra-platelet associated intracellular events. The model predictions will be validated in vitro in a carefully designed set of experiments. This will be achieved according to the following specific aims: We will develop a mechanotransduction model of platelet mediated thrombosis where a top/macro-scale model of flow-induced thrombogenicity using DPD at the µm-length and ms-time scales, in which multiple flowing platelets interact with each other and blood vessel walls or devices, will be fully coupled with a bottom/micro-scale model using CGMD at the nm-length and ps-time scales, in which platelets with multiple intracellular constituents evolve during activation as platelet lose their quiescent discoid shape and filopodia grow. The top and bottom models will be interfaced such that the hemodynamics will interactively respond to platelet shape change upon activation and platelet aggregation and thrombus is formed. The effect of modulating platelet mechanical properties via antiplatelet agents will be modeled as well. All model aspects will be validated in vitro in a series of carefully designed experiments characterizing the mechanical properties of platelets and using blood flow experiments where conditions leading to flow induced platelet activation will be replicated, as well as experiments where platelet-wall and platelet device interactions will be measured and where platelets will be pretreated with modulating agents. These data will be used to fine tune the large number of model parameters involved in this multiscale simulation and for validating the model predictions. An independent 3rd party evaluation of the model credibility is also included as an integral part of the project. e will also concentrate on the development of efficient algorithms adapted for ultra-scalable large HPC clusters to reduce prohibitive computation costs, so as to bring such ambitious large multiscale simulations within the reach of the multiscale modeling community at large and enable to adopt it to other relevant modeling needs and interests. To further enable these technologies, large sharable data base will be created where software tools, numerical codes, model and experimental data and protocols will be deposited and guidance will be provided for using them. The leaders of the project will be active in various MSM consortium working groups to further disseminate the project outcomes and share them with the modeling community. The methodology proposed represents a paradigm shift in the burgeoning field of multiscale simulations and its application to solving complex clinical problems at the interface of engineering and biology. Predicting the progression of arterial thrombosis under circulation conditions, providing tools for improved pharmacological management as compared to existing empirics-based treatments, and providing a modeling tool for developing the next generation of devices with reduced thrombogenicity may lead to reduced mortality rates, improved patients' quality of life, and an overall reduction of the financial burden of the ensuing healthcare costs.
 描述(由申请人提供):心血管疾病仍然是发达国家的主要死亡原因,每年占全球死亡人数的近 30%,在美国占 35%,而冠状动脉疾病 (CAD) 及其相关的血栓风险是造成这一疾病的原因。无独有偶,美国 6 例死亡中就有 1 例死亡,为患有严重心血管疾病的患者提供救生解决方案的植入式血液循环装置却面临着血栓形成和血栓栓塞并发症的问题,需要复杂的治疗。血管疾病过程和装置相关血栓形成并发症的潜在机制是通过血液成分与受损血管壁的相互作用以及心血管病理引发和产生的非生理流动模式而加剧的。通过长期激活血小板来增强止血反应。类似的血栓形成是由病理流场和与异物表面的接触引起的。分子水平事件和宏观运输之间不同的时空尺度是一个重大的建模和计算挑战,这需要多学科综合的多尺度数值方法,但其覆盖较小分子机制(例如血小板期间丝状伪足形成)的能力有限。在我们提供的这个应用中,利用分子动力学(MD)来覆盖所涉及的多尺度在计算上是令人望而却步的。 开发一种全面的、最先进的多尺度数值方法,能够弥合宏观输运和随后的分子事件之间的差距,我们将使用集成的耗散粒子动力学(DPD)和粗粒分子动力学(CGMD)。 ) ) 允许血小板不断改变其形状并通过生物力学转导链接链协同激活、与其他血液成分和凝血因子相互作用、聚集、相互作用和粘附的方法在这个多尺度模型中,机械传导 CGMD 底部血小板激活模型被嵌入到 DPD 血流顶部模型中,宏观尺度模型的动态应力将交互转换为内部的微米到纳米尺度模型。该模型的预测将在一组精心设计的实验中进行体外验证,这将根据以下具体目标来实现:我们将开发血小板介导的血栓形成的机械传导模型。使用微米长度和毫秒时间尺度的 DPD 的流动诱导血栓形成的顶部/宏观模型,其中多个流动血小板彼此相互作用,血管壁或装置将与底部/微观完全耦合在纳米长度和皮秒时间尺度上使用 CGMD 的尺度模型,其中具有多种细胞内成分的血小板在激活过程中随着血小板失去其静止的盘状形状和丝状伪足的生长而进化。顶部和底部模型将连接。这样,血流动力学将在激活、血小板聚集和血栓形成时对血小板形状变化做出交互反应。还将对通过抗血小板药物调节血小板机械特性的效果进行建模。所有模型方面都将在体外进行一系列仔细的验证。设计了表征血小板机械特性的实验,并使用血流实验来复制导致血流诱导血小板活化的条件,以及血小板壁和血小板的实验。 将测量血小板装置的相互作用,并用调节剂对血小板进行预处理。这些数据将用于微调此多尺度模拟中涉及的大量模型参数,并验证模型的独立第三方评估。可信度也被作为该项目的一个组成部分,我们还将专注于开发适用于超可扩展大型 HPC 集群的高效算法,以降低令人望而却步的计算成本,从而使这种雄心勃勃的大型多尺度模拟成为可能。为了进一步实现这些技术,将创建大型可共享数据库,其中将存储软件工具、数字代码、模型和实验数据和协议,并提供指导。该项目的领导者将积极参与各个 MSM 联盟工作组,以进一步传播项目成果并与建模界分享,所提出的方法代表了新兴的多尺度模拟领域的范式转变。应用来解决预测循环条件下动脉血栓形成的进展,与现有的基于经验的治疗相比,提供改进药物管理的工具,并为开发下一代设备提供建模工具。血栓形成可能会降低死亡率,改善患者的生活质量,并总体减轻随之而来的医疗费用的经济负担。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANNY BLUESTEIN其他文献

DANNY BLUESTEIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANNY BLUESTEIN', 18)}}的其他基金

Biomechanical Approaches and Technologies for Enhancing TAVR Outcomes
提高 TAVR 效果的生物力学方法和技术
  • 批准号:
    10449331
  • 财政年份:
    2018
  • 资助金额:
    $ 71.82万
  • 项目类别:
Biomechanical Approaches and Technologies for Enhancing TAVR Outcomes
提高 TAVR 效果的生物力学方法和技术
  • 批准号:
    10201598
  • 财政年份:
    2018
  • 资助金额:
    $ 71.82万
  • 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
  • 批准号:
    10464978
  • 财政年份:
    2017
  • 资助金额:
    $ 71.82万
  • 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
  • 批准号:
    9903032
  • 财政年份:
    2017
  • 资助金额:
    $ 71.82万
  • 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
  • 批准号:
    9344868
  • 财政年份:
    2017
  • 资助金额:
    $ 71.82万
  • 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
  • 批准号:
    10221033
  • 财政年份:
    2017
  • 资助金额:
    $ 71.82万
  • 项目类别:
Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis
血流和血小板介导的血栓形成的多尺度建模
  • 批准号:
    9032130
  • 财政年份:
    2016
  • 资助金额:
    $ 71.82万
  • 项目类别:
Multiscale modeling of blood flow and clotting in cardiovascular devices
心血管设备中血流和凝血的多尺度建模
  • 批准号:
    8114454
  • 财政年份:
    2011
  • 资助金额:
    $ 71.82万
  • 项目类别:
Multiscale modeling of blood flow and clotting in cardiovascular devices
心血管设备中血流和凝血的多尺度建模
  • 批准号:
    8258220
  • 财政年份:
    2011
  • 资助金额:
    $ 71.82万
  • 项目类别:
Optimizing Cardiovascular Device Thromboresistance for Eliminating Anticoagulants
优化心血管装置的抗血栓能力以消除抗凝剂
  • 批准号:
    8325933
  • 财政年份:
    2010
  • 资助金额:
    $ 71.82万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Regulation of OXPHOS Assembly in Skeletal Muscles
骨骼肌中 OXPHOS 组装的调节
  • 批准号:
    10660712
  • 财政年份:
    2023
  • 资助金额:
    $ 71.82万
  • 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
  • 批准号:
    10513140
  • 财政年份:
    2022
  • 资助金额:
    $ 71.82万
  • 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
  • 批准号:
    10670397
  • 财政年份:
    2022
  • 资助金额:
    $ 71.82万
  • 项目类别:
Modeling mechanisms in cytokinesis, cell polarization and motility
胞质分裂、细胞极化和运动的建模机制
  • 批准号:
    10589923
  • 财政年份:
    2020
  • 资助金额:
    $ 71.82万
  • 项目类别:
Modeling mechanisms in cytokinesis, cell polarization and motility
胞质分裂、细胞极化和运动的建模机制
  • 批准号:
    10378767
  • 财政年份:
    2020
  • 资助金额:
    $ 71.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了