Multiscale modeling of blood flow and clotting in cardiovascular devices

心血管设备中血流和凝血的多尺度建模

基本信息

  • 批准号:
    8114454
  • 负责人:
  • 金额:
    $ 19.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-15 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The advent of implantable blood recirculating devices has provided life saving solutions to patients with severe cardiovascular diseases. Ventricular assist devices (VAD), blood pumps, and prosthetic heart valves (PHV) provide short to long term solutions for such patients. However, blood clots formation and the attendant risk for stroke remains an impediment to these devices. The complex life-long anticoagulant drug regimen they require, which induces vulnerability to hemorrhage and is not a viable therapy for some patients, does not eliminate this risk. Clot formation is potentiated by contact with foreign surfaces and the non-physiologic flow patterns that enhance the hemostatic response by chronically activating platelets. It is now recognized as the salient aspect of blood trauma in devices. We offer to develop state of the art multiscale numerical simulation methodology that will be able to predict and depict flow induced thrombogenicity in devices. Stresses induced by blood flow on platelets can be represented by a continuum mechanics models down to the order of the <m level. However, molecular effects of adhesion- aggregation bonds are on the order of nm. The coupling of such disparate spatiotemporal scales represents a major computational challenge. Our approach couples a macroscopic model that provides information about the flow induced stresses that may activate clotting, transmitted to a micro-to-nanoscale model based on Discrete Particle Dynamics (DPD) approach. This multi-scale model bridges the gap between macroscopic flow and the cellular scales by allowing the platelets to change their shape continuously in response to the mechanical stimuli. The project follows specific aims (1) develop a DPD model of flow induced thrombogenicity; incorporating biochemical and cellular reaction kinetics leading to platelet aggregation, clot formation and embolization. (2)Bridge the gap between macroscopic and molecular scales by incorporating this model into a multiscale model of flow-induced thrombogenicity, translating the stress dynamics to platelet associated biochemical and cellular events. (3) Validate DPD by comparing its predictions to computational fluid dynamics (CFD), and correlating its platelets activation and aggregation predictions to measurements in a blood recirculation loop. (4) Conduct error estimation and parameter sensitivity analysis, and optimize the computational efficiency across the scales in multi-cluster supercomputers. With extended life expectancy, increasing numbers of patients will require CVS devices. The vexing problem of device thrombogenicity calls for innovative approaches that couple biophysical and biochemical transport spanning the spatial and temporal scales. The tools developed in the proposed research are essential for optimizing the next generation of devices in order to reduce mortality rates and the ensuing healthcare costs, and improve patients' quality of life. Recent progress in computational methods and HPC has put such major challenges within our reach. The proposed methodology may stimulate the burgeoning field of multiscale simulations and its application to solving complex clinical problems at the interface of engineering and biology. It represents a paradigm shift in such simulations, advancing our understanding of biotransport processes to a new level that may have a major impact on important problems in biology and medicine. PHS 398/2590 (Rev. 06/09) Page 1 Continuation Format Page PUBLIC HEALTH RELEVANCE: Better understanding of the complex interactions between living tissues and mechanical stimuli, as represented by the vexing problem of flow-induced cardiovascular devices thrombogenicity, calls for innovative multidisciplinary approaches that couple biophysical and biochemical transport phenomena spanning the spatial and temporal scales. In this proposal a multi-scale modeling approach will be developed that will efficiently utilize high performance computing (HPC) resources. The knowledge that will be gained by the proposed research is essential for developing the next generation of devices that will reduce mortality rates, improve patients' quality of life, and reduce the ensuing healthcare costs. The innovative methodology that will be developed may stimulate the burgeoning field of multiscale simulations and its application to solving complex clinical problems at the interface of engineering and biology. It has the potential to advance our understanding of biotransport processes to a new level that will have a major impact on important problems in biology and medicine.
描述(由申请人提供):植入式血液再循环装置的出现为患有严重心血管疾病的患者提供了挽救生命的解决方案。心室辅助装置 (VAD)、血泵和人工心脏瓣膜 (PHV) 为此类患者提供短期到长期的解决方案。然而,血栓形成和随之而来的中风风险仍然是这些设备的障碍。他们需要复杂的终生抗凝药物治疗方案,这会导致出血的风险,并且对于某些患者来说不是一种可行的治疗方法,但并不能消除这种风险。与异物表面的接触和非生理流动模式会增强凝块的形成,从而通过长期激活血小板来增强止血反应。现在它被认为是设备中血液创伤的一个突出方面。我们致力于开发最先进的多尺度数值模拟方法,该方法将能够预测和描述设备中流动诱导的血栓形成。血流在血小板上引起的应力可以用连续介质力学模型表示,直至<m级。然而,粘附-聚集键的分子效应是纳米量级的。这种不同的时空尺度的耦合是一个重大的计算挑战。我们的方法结合了一个宏观模型,该模型提供了有关可能激活凝血的流动诱导应力的信息,并传输到基于离散粒子动力学(DPD)方法的微米到纳米尺度模型。这种多尺度模型通过允许血小板响应机械刺激而不断改变其形状,从而弥合了宏观流动和细胞尺度之间的差距。该项目遵循特定目标(1)开发血流诱导血栓形成的 DPD 模型;结合生化和细胞反应动力学,导致血小板聚集、凝块形成和栓塞。 (2)通过将该模型纳入血流诱导血栓形成的多尺度模型中,将应激动力学转化为血小板相关的生化和细胞事件,从而弥合宏观和分子尺度之间的差距。 (3) 通过将 DPD 的预测与计算流体动力学 (CFD) 进行比较,并将其血小板激活和聚集预测与血液再循环回路中的测量结果相关联,来验证 DPD。 (4)进行误差估计和参数敏感性分析,优化多集群超级计算机跨尺度的计算效率。 随着预期寿命的延长,越来越多的患者将需要 CVS 设备。装置血栓形成的棘手问题需要创新方法,将跨空间和时间尺度的生物物理和生化运输结合起来。拟议研究中开发的工具对于优化下一代设备至关重要,以降低死亡率和随之而来的医疗成本,并提高患者的生活质量。计算方法和高性能计算的最新进展使我们能够应对这些重大挑战。所提出的方法可能会刺激多尺度模拟的新兴领域及其在工程和生物学领域解决复杂临床问题的应用。它代表了此类模拟的范式转变,将我们对生物转运过程的理解提升到了一个新水平,可能对生物学和医学中的重要问题产生重大影响。 PHS 398/2590 (Rev. 06/09) 第 1 页 继续格式页 公共卫生相关性:更好地理解活体组织和机械刺激之间的复杂相互作用,以血流诱导的心血管装置血栓形成的棘手问题为代表,需要创新的多学科方法,将跨越空间和时间尺度的生物物理和生化运输现象结合起来。在该提案中,将开发一种多尺度建模方法,该方法将有效利用高性能计算(HPC)资源。通过拟议研究获得的知识对于开发下一代设备至关重要,这些设备将降低死亡率、改善患者的生活质量并降低随之而来的医疗费用。将开发的创新方法可能会刺激多尺度模拟的新兴领域及其在工程和生物学交叉领域解决复杂临床问题的应用。它有可能将我们对生物转运过程的理解提高到一个新的水平,这将对生物学和医学的重要问题产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANNY BLUESTEIN其他文献

DANNY BLUESTEIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANNY BLUESTEIN', 18)}}的其他基金

Biomechanical Approaches and Technologies for Enhancing TAVR Outcomes
提高 TAVR 效果的生物力学方法和技术
  • 批准号:
    10449331
  • 财政年份:
    2018
  • 资助金额:
    $ 19.07万
  • 项目类别:
Biomechanical Approaches and Technologies for Enhancing TAVR Outcomes
提高 TAVR 效果的生物力学方法和技术
  • 批准号:
    10201598
  • 财政年份:
    2018
  • 资助金额:
    $ 19.07万
  • 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
  • 批准号:
    10464978
  • 财政年份:
    2017
  • 资助金额:
    $ 19.07万
  • 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
  • 批准号:
    9903032
  • 财政年份:
    2017
  • 资助金额:
    $ 19.07万
  • 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
  • 批准号:
    9344868
  • 财政年份:
    2017
  • 资助金额:
    $ 19.07万
  • 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
  • 批准号:
    10221033
  • 财政年份:
    2017
  • 资助金额:
    $ 19.07万
  • 项目类别:
Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis
血流和血小板介导的血栓形成的多尺度建模
  • 批准号:
    9265504
  • 财政年份:
    2016
  • 资助金额:
    $ 19.07万
  • 项目类别:
Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis
血流和血小板介导的血栓形成的多尺度建模
  • 批准号:
    9032130
  • 财政年份:
    2016
  • 资助金额:
    $ 19.07万
  • 项目类别:
Multiscale modeling of blood flow and clotting in cardiovascular devices
心血管设备中血流和凝血的多尺度建模
  • 批准号:
    8258220
  • 财政年份:
    2011
  • 资助金额:
    $ 19.07万
  • 项目类别:
Optimizing Cardiovascular Device Thromboresistance for Eliminating Anticoagulants
优化心血管装置的抗血栓能力以消除抗凝剂
  • 批准号:
    8325933
  • 财政年份:
    2010
  • 资助金额:
    $ 19.07万
  • 项目类别:

相似国自然基金

血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
睡眠剥夺通过上调BMAL1/IL-17轴促进三级淋巴结构形成加重哮喘的研究
  • 批准号:
    82300039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
S100A6通过调控ZNF750组蛋白甲基化促进糖尿病角质形成细胞分化障碍的机制研究
  • 批准号:
    82302802
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肿瘤相关成纤维细胞通过CCL5/CCR5轴促进神经内分泌前列腺癌顺铂耐药的机制研究
  • 批准号:
    82373358
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
鼻腔共生表皮葡萄球菌通过抗菌肽-moDC-CCL17通路抑制过敏性鼻炎的分子机制
  • 批准号:
    82302595
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational Modeling of Device-Induced Platelet Activation and Receptor Shedding Relevant to Thrombosis and Bleeding in Device-Assisted Circulation
与装置辅助循环中血栓形成和出血相关的装置诱导血小板激活和受体脱落的计算模型
  • 批准号:
    10582083
  • 财政年份:
    2022
  • 资助金额:
    $ 19.07万
  • 项目类别:
Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis
血流和血小板介导的血栓形成的多尺度建模
  • 批准号:
    9265504
  • 财政年份:
    2016
  • 资助金额:
    $ 19.07万
  • 项目类别:
Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis
血流和血小板介导的血栓形成的多尺度建模
  • 批准号:
    9032130
  • 财政年份:
    2016
  • 资助金额:
    $ 19.07万
  • 项目类别:
Multiscale Modeling of Sickle Cell Anemia: Methods and Validation
镰状细胞性贫血的多尺度建模:方法和验证
  • 批准号:
    9315872
  • 财政年份:
    2013
  • 资助金额:
    $ 19.07万
  • 项目类别:
Multiscale Modeling of Sickle Cell Anemia: Methods and Validation
镰状细胞性贫血的多尺度建模:方法和验证
  • 批准号:
    8476359
  • 财政年份:
    2013
  • 资助金额:
    $ 19.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了