Optimizing sensori-motor training post-stroke
优化中风后感觉运动训练
基本信息
- 批准号:9512137
- 负责人:
- 金额:$ 48.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-28 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:21 year oldAccountingAction ResearchAcuteAdolescentAgeAlgorithmsBrainBrain imagingCaringCharacteristicsChildChildhood strokeClassificationClinicalClinical DataClinical TrialsCohort StudiesCollaborationsComputer SimulationComputer softwareCorticospinal TractsDataData QualityData SetDatabasesDevelopmentDevicesDiseaseEarly treatmentEnrollmentEtiologyEvidence based practiceFeasibility StudiesForce of GravityFunctional Magnetic Resonance ImagingFunctional disorderFutureGoalsHandHealthHeterogeneityHuman ResourcesImpairmentIncidenceInsuranceInternationalLearningLesionLightLinkMachine LearningMagnetic Resonance ImagingMeasuresMethodsModelingMotorMovementMulti-Institutional Clinical TrialNational Health InsuranceNeurorehabilitationOutcomePatientsPatternPerformanceRecoveryRehabilitation therapyResearch InfrastructureRestSamplingScanningScheduleSpace ModelsStrokeStructureTarget PopulationsTestingTimeTrainingTreatment ProtocolsTreatment outcomeUpper Extremityacute strokearmbaseclinical carecostcost effectivedesigndisabilitydosagedynamic systemeffective therapyexoskeletoninclusion criteriaindividual patientindividualized medicinekinematicsmotor learningnovelpatient populationpost strokeprogramsprospectiverelating to nervous systemtreatment group
项目摘要
Project Summary
The large variability in lesions, impairment, and responsiveness to training following stroke has
hindered the development of principled and cost-effective approaches to neuro-rehabilitation of
the upper extremity. Our long-term goal is to develop predictive personalized neurorehabilitation
therapy based on large data sets. This proposal is based on a unique opportunity to design and
execute a large neuro-rehabilitation cohort study at a relatively low cost. Building on our
established US-French collaborations, with interdisciplinary expertise in neurorehabilitation,
brain imaging, dynamical systems, and statistical learning, we will predict recovery and
individualize therapy with the following novel three-pronged approach. In Aim 1, we will develop
a database of clinical and neural patient characteristics, treatments, and outcomes from 500
patients post-stroke receiving upper extremity rehabilitation therapy with the ARMEO Spring
device (a gravity compensating exoskeleton) in routine clinical care. Inclusion criteria will be as
broad as possible to include patients with a large variety of brain lesions, as assessed by state-
of-the-art magnetic resonance imaging (MRI) and functional MRI scans. In aim 2, using the
database, we will predict long-term changes in upper extremity outcomes as a function of
patient's characteristics and treatment using dynamical models that link motor learning to
recovery. The final models will expand and combine previous computational models of motor
learning at small time scales with models of recovery at long time scales, and will include mixed
effects to accurately predict long-term recovery for individual patients. In aim 3, based on these
predictions, we will perform a feasibility study aimed at individualizing upper extremity
rehabilitation to maximize recovery. Given a new patient, characterized by a number of baseline
characteristics that predict recovery, we will select the schedule of treatment that was the most
effective for similar patients in the database. The recovery models and scheduling methods
developed in this proposal will provide the basis for future clinical software that suggests timing,
dosage, and content of therapy from early clinical data, kinematic performance, and routine
scans. Such an approach will transform neurorehabilitation programs because the clinician,
patient, and insurance company will be able to determine effective treatments while reducing
costs.
项目概要
中风后病变、损伤和对训练的反应的巨大变异性
阻碍了有原则且具有成本效益的神经康复方法的发展
上肢。我们的长期目标是开发预测性个性化神经康复
基于大数据集的治疗。该提案基于一个独特的设计和
以相对较低的成本进行大型神经康复队列研究。建立在我们的
建立了美法合作关系,在神经康复方面拥有跨学科专业知识,
脑成像、动力系统和统计学习,我们将预测恢复和
通过以下新颖的三管齐下的方法进行个体化治疗。在目标 1 中,我们将开发
包含 500 名患者的临床和神经患者特征、治疗和结果的数据库
接受 ARMEO Spring 上肢康复治疗的中风后患者
常规临床护理中的装置(重力补偿外骨骼)。纳入标准如下
根据国家评估,尽可能广泛地包括患有多种脑损伤的患者
最先进的磁共振成像 (MRI) 和功能性 MRI 扫描。在目标 2 中,使用
数据库中,我们将预测上肢结果的长期变化作为函数
使用将运动学习与运动学习联系起来的动态模型来了解患者的特征和治疗
恢复。最终模型将扩展并结合之前的电机计算模型
在小时间尺度上学习,在长时间尺度上恢复模型,并且将包括混合
准确预测个体患者的长期康复效果。在目标 3 中,基于这些
预测,我们将进行一项旨在个性化上肢的可行性研究
康复以最大限度地恢复。给定一个新患者,其特征是有一些基线
预测康复的特征,我们将选择最有效的治疗方案
对数据库中的类似患者有效。恢复模型和调度方法
该提案中开发的将为未来建议时间的临床软件提供基础,
来自早期临床数据、运动学表现和常规的治疗剂量和内容
扫描。这种方法将改变神经康复计划,因为临床医生,
患者和保险公司将能够确定有效的治疗方法,同时减少
成本。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision.
随机最优前馈反馈控制决定了有或没有视觉的手臂运动的时间和变化。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:4.3
- 作者:Berret, Bastien;Conessa, Adrien;Schweighofer, Nicolas;Burdet, Etienne
- 通讯作者:Burdet, Etienne
Minimizing Precision-Weighted Sensory Prediction Errors via Memory Formation and Switching in Motor Adaptation.
通过运动适应中的记忆形成和切换来最小化精确加权的感官预测误差。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Oh, Youngmin;Schweighofer, Nicolas
- 通讯作者:Schweighofer, Nicolas
Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons.
电耦合控制下橄榄神经元的维度和混沌放电。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:4.3
- 作者:Hoang, Huu;Lang, Eric J;Hirata, Yoshito;Tokuda, Isao T;Aihara, Kazuyuki;Toyama, Keisuke;Kawato, Mitsuo;Schweighofer, Nicolas
- 通讯作者:Schweighofer, Nicolas
Dissociating Sensorimotor Recovery and Compensation During Exoskeleton Training Following Stroke.
中风后外骨骼训练期间分离感觉运动恢复和补偿。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nibras, Nadir;Liu, Chang;Mottet, Denis;Wang, Chunji;Reinkensmeyer, David;Remy;Laffont, Isabelle;Schweighofer, Nicolas
- 通讯作者:Schweighofer, Nicolas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas Schweighofer其他文献
Nicolas Schweighofer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas Schweighofer', 18)}}的其他基金
Optimizing the Dose of Rehabilitation After Stroke
优化中风后康复的剂量
- 批准号:
8408786 - 财政年份:2011
- 资助金额:
$ 48.31万 - 项目类别:
Optimizing the Dose of Rehabilitation After Stroke
优化中风后康复的剂量
- 批准号:
8041145 - 财政年份:2011
- 资助金额:
$ 48.31万 - 项目类别:
Optimizing the Dose of Rehabilitation After Stroke
优化中风后康复的剂量
- 批准号:
8210967 - 财政年份:2011
- 资助金额:
$ 48.31万 - 项目类别:
Optimizing the Dose of Rehabilitation After Stroke
优化中风后康复的剂量
- 批准号:
8727795 - 财政年份:2011
- 资助金额:
$ 48.31万 - 项目类别:
Optimizing the Dose of Rehabilitation After Stroke
优化中风后康复的剂量
- 批准号:
8603860 - 财政年份:2011
- 资助金额:
$ 48.31万 - 项目类别:
Task Practice Schedules to Enhance Recovery after Stroke
促进中风后恢复的任务练习计划
- 批准号:
7079437 - 财政年份:2005
- 资助金额:
$ 48.31万 - 项目类别:
Task Practice Schedules to Enhance Recovery after Stroke
促进中风后恢复的任务练习计划
- 批准号:
6963663 - 财政年份:2005
- 资助金额:
$ 48.31万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
STATISITICAL DESIGN, MONITORING & COORD. OF VISION CLINICAL TRIALS & EPIDEMIOLOGY
统计设计、监测
- 批准号:
9004297 - 财政年份:2011
- 资助金额:
$ 48.31万 - 项目类别:
Genetic Determinants of Premature Vascular Dysfunction in Families
家庭早发性血管功能障碍的遗传决定因素
- 批准号:
7663583 - 财政年份:2009
- 资助金额:
$ 48.31万 - 项目类别:
Genetic Determinants of Premature Vascular Dysfunction in Families
家庭早发性血管功能障碍的遗传决定因素
- 批准号:
7860577 - 财政年份:2009
- 资助金额:
$ 48.31万 - 项目类别:
Genetic Determinants of Premature Vascular Dysfunction in Families
家庭早发性血管功能障碍的遗传决定因素
- 批准号:
8150617 - 财政年份:2009
- 资助金额:
$ 48.31万 - 项目类别:
Genetic Determinants of Premature Vascular Dysfunction in Families
家庭早发性血管功能障碍的遗传决定因素
- 批准号:
7860577 - 财政年份:2009
- 资助金额:
$ 48.31万 - 项目类别: