Pulsed infrared excitability of inner ear: molecular mechanisms and therapeutics

内耳脉冲红外兴奋性:分子机制和治疗

基本信息

项目摘要

 DESCRIPTION (provided by applicant): We have shown that pulsed infrared radiation (IR) utilizes endogenous sensitivity of cells in the inner ear and does not require pharmacological or genetic manipulation of the cells. Rat neonatal vestibular and spiral ganglion neurons responded with intracellular [Ca]i transients that could be entrained by the 2+ infrared pulses. Pharmacological data further show that IR likely activates the endoplasmic reticulum Ca2+ release with strong dependence on mitochondrial Ca2+ cycling, and the responses persist even in Ca2+-free extracellular solution. We will examine responses of ER and mitochondria to pulsed IR. Results will provide significant new information about IR neuronal excitability and functional role of key intracellular Ca2+ stores in the effects of IR. This knowledge will apply across cell types, including hair cells and neurons. The precise photocontrol of intracellular organelles and signaling pathways with the possibility to excite or inhibit individual neuron activity, without chemical modifications, could provide immediate high impact applications in neuroscience. Clarifying the role of intracellular Ca2+ in synaptic transmission in inner ear synapses will lay the groundwork for understanding its role in maintaining physiological function and in pathology. We will also develop new optical probes for localized stimulation of inner ear hair cells and neurons. Finally we will examine IR evoked vestibular eye movement and myogenic responses in vivo and will explore the laser parameters effective and safe for future neuroprosthetic application(s). The results will lead to new applications of IR optical stimuli in basic science and potentially benefit patients suffering from vestibular loss, hearing loss, tinnits and pain. This optical stimulation technique will greatly enhance research in the inner ear field and likely have broad applications in neuroscience.
 描述(由申请人提供):我们已经证明,脉冲红外辐射(IR)利用内耳细胞的内源敏感性,并且不需要对细胞进行药理学或遗传操作,从而使大鼠新生前庭和螺旋神经节神经元对细胞内[Ca]作出反应。 ]i 瞬变可能被 2+ 红外脉冲夹带,药理学数据进一步表明 IR 可能激活内质网 Ca2+ 释放,并且强烈依赖于 。线粒体 Ca2+ 循环,即使在无 Ca2+ 的细胞外溶液中,反应也持续存在。我们将检查 ER 和线粒体对脉冲 IR 的反应,结果将提供有关 IR 神经元兴奋性和关键细胞内 Ca2+ 储存的功能作用的重要新信息。 IR。这种知识将适用于各种细胞类型,包括毛细胞和神经元,细胞内细胞器和信号通路的精确光控制可以激发或抑制单个神经元的活动,无需化学修饰,可以提供即时的高信号。阐明细胞内 Ca2+ 在内耳突触传递中的作用将为理解其在维持生理功能和病理学中的作用奠定基础。我们还将开发用于局部刺激内耳毛细胞和病理学的新光学探针。最后,我们将在体内检查红外线引起的前庭眼球运动和肌原性反应,并将探索对未来神经假体应用有效且安全的激光参数,这些结果将导致红外线光学刺激的新应用。这种光刺激技术将极大地增强内耳领域的研究,并可能在神经科学领域拥有广泛的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suhrud M. Rajguru其他文献

Radiant energy during infrared neural stimulation at the target structure
红外神经刺激目标结构时的辐射能
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Richter;Suhrud M. Rajguru;R. Stafford;S. Stock
  • 通讯作者:
    S. Stock
Optical stimulation of the auditory nerve: effects of pulse shape
听觉神经的光刺激:脉冲形状的影响
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Banakis;A. I. Matic;Suhrud M. Rajguru;C. Richter
  • 通讯作者:
    C. Richter
Three-Dimensional Biomechanical Model of Benign Paroxysmal Positional Vertigo
良性阵发性位置性眩晕的三维生物力学模型
  • DOI:
    10.1023/b:abme.0000030259.41143.30
  • 发表时间:
    2002-12-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Suhrud M. Rajguru;Marytheresa A. Ifediba;R. Rabbitt
  • 通讯作者:
    R. Rabbitt
Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling.
脉冲红外辐射通过调节线粒体钙循环来刺激培养的新生儿螺旋神经节和前庭神经节神经元。
  • DOI:
    10.1152/jn.00253.2014
  • 发表时间:
    2014-09-15
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Vicente Lumbreras;E. Bas;C. Gupta;Suhrud M. Rajguru
  • 通讯作者:
    Suhrud M. Rajguru
Inner Ear Therapeutics: An Overview of Middle Ear Delivery
内耳治疗:中耳输送概述
  • DOI:
    10.3389/fncel.2019.00261
  • 发表时间:
    2019-06-11
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Jaimin Patel;Mikhaylo Szczupak;Suhrud M. Rajguru;C. Balaban;M. Hoffer
  • 通讯作者:
    M. Hoffer

Suhrud M. Rajguru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suhrud M. Rajguru', 18)}}的其他基金

Therapeutic hypothermia to preserve residual hearing in veterans receiving cochlear implantation
低温治疗可保护接受人工耳蜗植入的退伍军人的残余听力
  • 批准号:
    10314602
  • 财政年份:
    2022
  • 资助金额:
    $ 37.47万
  • 项目类别:
Therapeutic hypothermia to preserve residual hearing in veterans receiving cochlear implantation
低温治疗可保护接受人工耳蜗植入的退伍军人的残余听力
  • 批准号:
    10616467
  • 财政年份:
    2022
  • 资助金额:
    $ 37.47万
  • 项目类别:
Application of mild therapeutic hypothermia for hearing conservation during cochlear implant surgeries
亚低温治疗在人工耳蜗植入手术中听力保护中的应用
  • 批准号:
    10327695
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
Application of mild therapeutic hypothermia for hearing conservation during cochlear implant surgeries
亚低温治疗在人工耳蜗植入手术中听力保护中的应用
  • 批准号:
    10540231
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
Pulsed infrared excitability of inner ear: molecular mechanisms and therapeutics
内耳脉冲红外兴奋性:分子机制和治疗
  • 批准号:
    9246496
  • 财政年份:
    2015
  • 资助金额:
    $ 37.47万
  • 项目类别:
Pulsed infrared excitability of inner ear: molecular mechanisms and therapeutics
内耳脉冲红外兴奋性:分子机制和治疗
  • 批准号:
    8887896
  • 财政年份:
    2015
  • 资助金额:
    $ 37.47万
  • 项目类别:

相似国自然基金

剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
  • 批准号:
    82300168
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
  • 批准号:
    82300169
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
  • 批准号:
    82370178
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
  • 批准号:
    82370128
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
  • 批准号:
    10656886
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
Investigating the Role of Heme in Acute and Chronic Sickle Cell Disease Pain
研究血红素在急性和慢性镰状细胞病疼痛中的作用
  • 批准号:
    10750175
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
Vagus nerve stimulation increases basal dopamine levels in the brain to decrease methamphetamine-mediated responses
迷走神经刺激会增加大脑中的基础多巴胺水平,从而减少甲基苯丙胺介导的反应
  • 批准号:
    10648045
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
  • 批准号:
    10578042
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
Targeting visceral pain through intestinal neuropod cell GUCY2C signaling
通过肠道神经足细胞 GUCY2C 信号传导治疗内脏疼痛
  • 批准号:
    10837293
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了